98%
921
2 minutes
20
Organic-inorganic composites as an efficient strategy to upgrade the structural and functional properties of synthetic polymers are attracting extensive attentions. However, there are few studies on the shape memory (SM) behavior of organic-inorganic composites. In the work, poly(ε-caprolactone) hybridized TiO nanomaterial (PCL-TiO) is made as the switching phase and integrated into poly (l-lactide) (PLLA) to construct an SM composite. PCL-TiO/PLLA shows "sea-island" structure and better interfacial adhesion than PCL/PLLA, which facilitates the transmission of elastic power between the switching phase and the fixing phase. PCL-TiO as switching phase exhibits lower enthalpy at 57 °C than PCL, and PCL-TiO also acts as "heat dispersion pump station", which builds a dynamically responsive system and initiates shape change. The shape fixing and recovery ratio of PCL-TiO/PLLA are 93.9 % and 94.4 %, respectively, and go back to the original shape within 15 s at 57 °C. At the same time, PCL-TiO endows SMP with good antibacterial properties. Then this work provides a well-placed way for developing SM materials with structure-function integration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.126567 | DOI Listing |
Blood Adv
September 2025
Alfred Health and Monash University, East Melbourne, Australia.
Zanubrutinib is a next-generation covalent Bruton tyrosine kinase (BTK) inhibitor designed to provide complete and sustained BTK occupancy for efficacy across disease-relevant tissues, with fewer off-target adverse events (AEs) than other covalent BTK inhibitors. In the phase 3 ASPEN study (BGB-3111-302), comparable efficacy and a favorable safety profile versus ibrutinib were demonstrated in patients with MYD88-mutated Waldenström macroglobulinemia (WM), leading to approval of zanubrutinib for patients with WM. BGB-3111-LTE1 (LTE1) is a long-term extension study to which eligible patients, including patients from comparator treatment arms, could enroll following participation in various parent studies of zanubrutinib to treat B-cell malignancies.
View Article and Find Full Text PDFMicrosyst Nanoeng
September 2025
Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
Terahertz communication systems demand versatile devices capable of simultaneously controlling propagating waves and surface plasmon polaritons (SPPs) in far-field (FF) and near-field (NF) channels, yet existing solutions are constrained by volatile operation, single-function limitations, and the inability to integrate NF and FF functionalities. Here, we present a nonvolatile reconfigurable terahertz metasurface platform leveraging the phase-change material GeSbTe(GST) to achieve on-demand dual-channel modulation-a first in the terahertz regime. By exploiting the stark conductivity contrast of GST between amorphous and crystalline states, our design enables energy-efficient switching between NF-SPP manipulation and FF-wavefront engineering without requiring continuous power input.
View Article and Find Full Text PDFTransl Anim Sci
May 2025
Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA.
Two experiments were conducted to evaluate the effects of feeding dry-rolled hybrid rye grain (DRRG) as a replacement for dry-rolled corn (DRC) in beef cattle finishing diets. Two inclusion strategies for rye grain (RG) were evaluated: a total replacement of DRC for a limited time and a partial replacement during the entire feeding trial for Exp. 1 and 2, respectively.
View Article and Find Full Text PDFRSC Adv
August 2025
University of Coimbra, CFisUC, Physics Department Rua Larga P-3004-516 Coimbra Portugal
Nanoscale materials are attracting a great deal of attention due to their exceptional properties, making them indispensable for many advanced applications. Among these materials, spinel ferrites stand out for their potential applications in electronic, optoelectronic, energy storage and other devices. This is why the development of a synthesis process combined with rigorous optimization of annealing conditions is provided to be an essential approach to control nanoparticle formation and fine-tuning their structural, morphological and functional characteristics.
View Article and Find Full Text PDFJ Neurochem
September 2025
Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
Memory formation involves a complex interplay of molecular and cellular processes, including synaptic plasticity mechanisms such as long-term potentiation (LTP) and long-term depression (LTD). These processes rely on activity-dependent gene expression and local protein synthesis at synapses. A central unresolved question in neuroscience is how memories can be stably maintained over time, despite the transient nature of the proteins involved in their initial encoding.
View Article and Find Full Text PDF