98%
921
2 minutes
20
Background: B7 homolog 4 (B7-H4) and indoleamine 2,3-dioxygenase (IDO1) are factors involved in the inhibition of antitumor activity and are new therapeutic targets for immune checkpoint therapy. Our study aimed to simultaneously investigate the interrelationship among B7-H4, IDO1 and programmed cell death ligand 1 (PD-L1) expression in triple-negative breast cancer (TNBC), including tumor immune microenvironment (TIME) and TNBC subtypes.
Methods: Immunostaining for PD-L1, B7-H4, and IDO1 was performed on whole-slide sections of 119 cases of TNBC. The TIME was evaluated based on stromal tumor infiltrating lymphocytes (sTILs; %), pattern classification of TILs, tumor-stroma ratio (TSR), and tertiary lymphoid structure (TLS). TNBC subtypes were also determined by immunohistochemistry analysis of cytokeratin 5/6 and androgen receptor (AR) expression.
Results: B7-H4 expression was significantly higher in cases with a combined positive score cutoff of 5 for PD-L1 (clone 28-8; p = 0.021), inflamed TIL pattern (p = 0.007), and TLS ≥ 4 (p = 0.006). B7-H4 expression was higher in case of CK5/6 ≥ 10 (p = 0.035). The H-scores of AR and B7-H4 were inversely correlated (ρ = - 0.509, p < 0.001). B7-H4 and IDO1 expression levels were inversely correlated in cases with AR < 10 (ρ = - 0.354, p < 0.001).
Conclusions: These results suggest that considering the TIL pattern and TLS and identifying the expression of PD-L1 and the basal-like type are useful for estimating B7-H4 expression. In addition, luminal androgen receptor (LAR)-type is frequently deficient in B7-H4 expression. In non-LAR types, B7-H4 and IDO1 expression are exclusive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12282-023-01498-7 | DOI Listing |
J Clin Invest
July 2025
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Lung cancer is the leading cause of cancer mortality among people with HIV (PWH), with increased incidence and poor outcomes. This study explored whether the tumor microenvironment (TME) of HIV-associated non-small cell lung cancer (NSCLC) limits tumor-specific immune responses. With a matched cohort of NSCLC samples from PWH and from people without HIV (PWOH), we used imaging mass cytometry, a linear mixed-effects model, and an artificial intelligence-based (AI-based) PageRank mathematical algorithm based on spectral graph theory to demonstrate that HIV-associated tumors have differential distribution of tumor-infiltrating CD8+ and CD4+ T cells, enriched for the expression of programmed cell death 1 (PD-1) and lymphocyte-activating gene 3 (LAG3), as well as activation and proliferation markers.
View Article and Find Full Text PDFBMC Cancer
January 2024
Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430062, Wuhan, China.
Background: Brain metastasis is a common outcome in non-small cell lung cancer, and despite aggressive treatment, its clinical outcome is still frustrating. In recent years, immunotherapy has been developing rapidly, however, its therapeutic outcomes for primary lung cancer and brain metastases are not the same, suggesting that there may be differences in the immune microenvironment of primary lung cancer and brain metastases, however, we currently know little about these differences.
Methods: Seventeen paired samples of NSCLC and their brain metastases and 45 other unpaired brain metastases samples were collected for the current study.
Heliyon
December 2023
Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
Tumor-mediated bypass of immune checkpoint inhibitor (ICI) therapy with anti-programmed death-1 (PD-1), anti-programmed death-ligand 1 (PD-L1, also called B7-H1 or CD274) or anti-cytotoxic T lymphocyte associated antigen-4 (CTLA-4) is a challenge of current years in the area of cancer immunotherapy. Alternative immune checkpoints (AICs) are molecules beyond the common PD-1, PD-L1 or CTLA-4, and are upregulated in patients who show low/no ICI responses. These are members of B7 family including B7-H2 (ICOS-L), B7-H3 (CD276), B7-H4 (B7x), V-domain immunoglobulin suppressor of T cell activation (VISTA), B7-H6, HHLA2 (B7-H5/B7-H7) and catabolic enzymes like indoleamine 2,3-dioxygenase 1 (IDO1), and others that are also contributed to the regulation of tumor immune microenvironment (TIME).
View Article and Find Full Text PDFBreast Cancer
November 2023
Department of Pathology, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan.
Background: B7 homolog 4 (B7-H4) and indoleamine 2,3-dioxygenase (IDO1) are factors involved in the inhibition of antitumor activity and are new therapeutic targets for immune checkpoint therapy. Our study aimed to simultaneously investigate the interrelationship among B7-H4, IDO1 and programmed cell death ligand 1 (PD-L1) expression in triple-negative breast cancer (TNBC), including tumor immune microenvironment (TIME) and TNBC subtypes.
Methods: Immunostaining for PD-L1, B7-H4, and IDO1 was performed on whole-slide sections of 119 cases of TNBC.
Diagnostics (Basel)
December 2021
Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia.
To increase the effectiveness of anticancer therapy based on immune checkpoint (IC) inhibition, some ICs are being investigated in addition to those used in clinic. We reviewed data on the relationship between PD-L1, B7-H3, B7-H4, IDO1, Galectin-3 and -9, CEACAM1, CD155, Siglec-15 and ADAM17 expression with cancer development in complex with the results of clinical trials on their inhibition. Increased expression of the most studied ICs-PD-L1, B7-H3, and B7-H4-is associated with poor survival; their inhibition is clinically significant.
View Article and Find Full Text PDF