98%
921
2 minutes
20
Solid-state batteries have become the most anticipated option for compatibility with high-energy density and safety. In situ polymerization, a novel strategy for the construction of solid-state systems, has extended its application from solid polymer electrolyte systems to other solid-state systems. This review summarizes the application of in situ polymerization strategies in solid-state batteries, which covers the construction of polymer, the formation of the electrolyte system, and the design of the full cell. For the polymer skeleton, multiple components and structures are being chosen. In the construction of solid polymer electrolyte systems, the choice of initiator for in situ polymerization is the focus of this review. New initiators, represented by lithium salts and additives, are the preferred choice because of their ability to play more diverse roles, while the coordination with other components can also improve the electrical properties of the system and introduce functionalities. In the construction of entire solid-state battery systems, the application of in situ polymerization to structure construction, interface construction, and the use of separators with multiplex functions has brought more possibilities for the development of various solid-state systems and even the perpetuation of liquid electrolytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202305322 | DOI Listing |
Dalton Trans
September 2025
Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.
The main bottleneck faced by traditional hydrogen production technology through water electrolysis lies in the high energy consumption of the anodic oxygen evolution reaction (OER). Combining the thermodynamically favorable ethanol oxidation reaction (EOR) with the hydrogen evolution reaction provides a promising route to reduce the energy consumption of hydrogen production and generate high value-added products. In this study, a facile method was developed for nickel oxyhydroxide (NiOOH) fabrication.
View Article and Find Full Text PDFJ Refract Surg
September 2025
Department of Refractive Surgery, Shanghai Aier Eye Hospital, Shanghai.
Purpose: To analyze the effects of ablation interruption on ablation depths and clinical refractive outcomes to characterize the impact of ambient temperature changes and ablation interruption on ocular surface temperature (OST) during excimer laser ablation.
Methods: This prospective study was conducted on laser ablations in polymethylmethacrylate (PMMA) plates and porcine corneas to simulate laser in situ keratomileusis (LASIK) treatments using the EX500 laser (Alcon Laboratories, Inc) at ambient temperatures of 18, 20, and 22 °C. Ablation interruption was performed for 1, 2, 3, 4, and 5 seconds at the 10th second of the treatment of -9.
Food Res Int
November 2025
Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Solid-state Brewing, Luzhou Laojiao Co. Ltd, Luzhou 646000, China; Key Laboratory of Monitoring and Assessm
Fermented foods are valued for their diverse flavor and health benefits, but the formation of ethyl carbamate (EC), a potential carcinogen, during production and storage poses challenges. Current EC reduction methods often compromise flavor and bioactive components. This study exemplifies a novel adsorbent combining activated carbon with metal-organic framework (MOF) chemistry for semi-selective EC removal.
View Article and Find Full Text PDFMikrochim Acta
September 2025
College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
As the most dangerous mycotoxin, aflatoxin B1 (AFB1) has caused some food safety issues to be concerned. In this study, a simultaneous detection and degradation method towards AFB1 was established. Covalent-organic frameworks (COFs) were firstly synthesized and directly in situ deposited on the stainless-steel mesh, which would trigger the free-radical polymerization of acrylamide to form a hydrogel coating.
View Article and Find Full Text PDFNat Commun
September 2025
Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
The synthesis of thin crystalline two-dimensional polymers (2DPs) typically relies on reversible dynamic covalent reactions. While substantial progress has been made in solution-based and interfacial syntheses, achieving 2DPs through irreversible carbon-carbon coupling reactions remains a formidable challenge. Herein, we present an on-liquid surface (a mixture of N,N-dimethylacetamide and water, DMAc-HO) synthesis method for constructing diyne-linked 2DP (DY2DP) crystals via Glaser coupling, assisted by a perfluoro-surfactant (PFS) monolayer.
View Article and Find Full Text PDF