ISG15-USP18 Dysregulation by Oxidative Stress Promotes IFN-γ Secretion from CD8+ T Cells in Vitiligo.

J Invest Dermatol

Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea. Electronic address:

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Excessive oxidative stress is thought to play pathologic roles in cellular senescence and autoimmune disorders by inducing inflammation and breaking down immune tolerance. In this study, we sought to identify the factors linking oxidative stress to autoimmunity and cellular senescence in vitiligo, where elevated oxidative stress plays an important role. RNA sequencing analysis of hydrogen peroxide-treated melanocytes revealed upregulation of ISG15. The upregulation of ISG15 was observed in vitiligo skin tissues as well as in the blood of patients with vitiligo, whereas USP18 downregulation was observed in vitiligo melanocytes and vitiligo skin tissues. Oxidative stress induced hypermethylation of the USP18 promoter region in keratinocytes and melanocytes, and USP18 promoter hypermethylation was also confirmed in vitiligo skin tissues. Our results indicate that USP18 promoter hypermethylation caused by oxidative stress increases ISG15 expression in keratinocytes and melanocytes along with senescence changes, leading CD8+ T cells to produce IFN-γ, the main pathogenic cytokine in vitiligo. Therefore, the ISG15-USP18 network may be important in oxidative stress-induced autoimmunity and cellular senescence in vitiligo pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jid.2023.08.006DOI Listing

Publication Analysis

Top Keywords

oxidative stress
24
cellular senescence
12
vitiligo skin
12
skin tissues
12
usp18 promoter
12
vitiligo
9
autoimmunity cellular
8
senescence vitiligo
8
upregulation isg15
8
observed vitiligo
8

Similar Publications

Background: The aim of this study was to establish a rat model of premature ovarian failure (POF) with cyclophosphamide (CTX), and explore the molecular basis of POF and the mechanism of Guishen-Erxian Decoction (GSEXD) to improve POF from the perspective of oxidative stress regulation of ovarian granulosa cell (OGC) DNA fragmentation.

Method: The study utilized SD rats to establish a POF model via CTX. Rats were divided into Control, POF group, three GSEXD dosage groups (low, medium, high), and a GSEXD+PI3K agonist group to assess GSEXD's therapeutic effects on oxidative stress, DNA fragmentation and ovarian damage.

View Article and Find Full Text PDF

Sepsis-induced cardiomyopathy (SIC) is a serious complication of sepsis. The relationship between SIC and protein acetylation, particularly the balance between acetylation and deacetylation in cardiomyocyte subcellular structures, as well as how nuclear-mitochondrial coordination maintains standard antioxidant stress capacity, remains unclear. This study focused on exploring the nuclear-mitochondrial regulatory mechanisms formed by the interplay of Sirtuin 3 (SIRT3) and Forkhead box O3a (FOXO3a).

View Article and Find Full Text PDF

Traumatic brain injuries (TBIs) are a risk factor for Alzheimer's disease (AD), and share several important pathological features including the development of neurofibrillary tangles (NFT) of tau protein. While this association is well established, the underlying pathogenesis is poorly defined and current treatment options remain limited, necessitating novel methods and approaches. In response we developed "TBI-on-a-chip", an trauma model utilizing murine cortical networks on microelectrode arrays (MEAs), capable of reproducing clinically relevant impact injuries while providing simultaneous morphological and electrophysiological readout.

View Article and Find Full Text PDF

Type-I Supramolecular Photosensitizer Enables GSH Depletion by Hydrogen Atom Transfer.

J Am Chem Soc

September 2025

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

Photodynamic therapy (PDT) induces oxidative stress that triggers a compensatory upregulation of intracellular glutathione (GSH), thereby diminishing PDT efficacy. The simultaneous generation of reactive oxygen species and depletion of GSH holds promise for amplifying oxidative damage and enhancing therapeutic outcomes yet remains a challenge. In this work, we present a Type-I supramolecular photosensitizer designed to deplete GSH through a hydrogen atom transfer mechanism while concurrently generating superoxide radicals.

View Article and Find Full Text PDF

Mitochondrial ClpX Inhibition Induces Ferroptosis and Blocks Pancreatic Cancer Cell Proliferation.

Chembiochem

September 2025

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.

The ATPase caseinolytic protease X (ClpX), forming the ClpXP complex with caseinolytic protease P (ClpP), is essential for mitochondrial protein homeostasis. While ClpP targeting is a recognized anticancer strategy, the role of ClpX in cancer remains underexplored. In pancreatic ductal adenocarcinoma (PDAC), elevated CLPX expression correlates with poor prognosis, suggesting its oncogenic function.

View Article and Find Full Text PDF