Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microbial lipids are ideal for developing liquid biofuels because of their sustainability and no dependence on food crops. Especially the bioprocess for microbial lipids may be made economical by using sustainable approaches, e.g., lignocellulose-based carbon sources. This demand led to a search for ideal microorganisms with the ability to utilize efficiently biomass into value-added products. Rhodosporidium toruloides species belongs to the family of oleaginous (OG) yeast, which aggregates up to 70% of its biomass to produce fatty acids which can be converted to a variety of biofuels. R. toruloides is extremely adaptable to different types of feedstocks. Among all feedstock, a lot of effort is going on to develop a bioprocess of fatty acid production from lignocellulose biomass. The lignocellulose biomass is pretreated using harsh conditions of acid, alkali, and other which leads to the generation of a variety of sugars and toxic compounds. Thus, so obtained lignocellulose hydrolysate may have conditions of different pH, variable carbon and nitrogen ratios, and other non-optimum conditions. Accordingly, a detailed investigation is required for molecular level metabolism of R. toruloides in response to the hydrolysate for producing desired biochemicals like fatty acids. The present review focuses on numerous elements and obstacles, including metabolism, biofuel production, cultivation parameters, and genetic alteration of mutants in extracting fatty acids from lignocellulosic materials utilizing Rhodosporidium spp. This review provides useful information on the research working to develop processes for lignocellulose biomass using oleaginous yeast.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-023-04681-wDOI Listing

Publication Analysis

Top Keywords

fatty acids
16
lignocellulose biomass
16
rhodosporidium toruloides
8
production lignocellulose
8
microbial lipids
8
oleaginous yeast
8
biomass
6
fatty
5
lignocellulose
5
potential rhodosporidium
4

Similar Publications

The nitrogen-fixing, chemolithoautotrophic genus is found across numerous diverse environments worldwide and is an important member of many ecosystems. These species serve as model systems for their metabolic properties and have industrial applications in bioremediation and sustainable protein, food and fertilizer production. Despite their abundance and utility, the majority of strains are without a genome sequence, and only eight validly published species are known to date.

View Article and Find Full Text PDF

Organisms use circadian clocks to synchronize physiological processes to anticipate the Earth's day-night cycles and regulate responses to environmental signals to gain competitive advantage. While divergent genetic clocks have been studied extensively in bacteria, fungi, plants, and animals, an ancient conserved circadian redox rhythm has been recently reported. However, its biological function and physiological outputs remain elusive.

View Article and Find Full Text PDF

Colorectal cancer ranks among the most prevalent and lethal malignant tumors globally. Historically, the incidence of colorectal cancer in China has been lower than that in developed European and American countries; however, recent trends indicate a rising incidence due to changes in dietary patterns and lifestyle. Lipids serve critical roles in human physiology, such as energy provision, cell membrane formation, signaling molecule function, and hormone synthesis.

View Article and Find Full Text PDF

Pseudoduganella rhizocola sp. nov., Isolated from Rhizospheric Soil.

Curr Microbiol

September 2025

Department of Integrative Biotechnology, Sungkyunkwan University, Natural Science Campus, 2066 Seobu-ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, Republic of Korea.

A novel bacterial strain, SM-13 was isolated from the rhizospheric soil of Epipremnum aureum (Jade Pothos) sampled in Suwon, Republic of Korea. The isolate was Gram-stain-negative, aerobic, motile, rod-shaped, cream-coloured, oxidase- and catalase-positive. Strain SM-13 grew at the range of 15-37 °C (optimum, 25 °C), at pH 6.

View Article and Find Full Text PDF

The treatment of metabolic dysfunction-associated steatotic liver disease involves physical activity, weight loss, and management of comorbidities (diabetes, hypertension, dyslipidemia). In 2024, the American Food and Drug Administration provisionally approved resmetirom for metabolic dysfunction-associated steatohepatitis. Other promising molecules are being evaluated (glucagon-like peptide 1 receptor agonists, fibroblast growth factor 21 agonist).

View Article and Find Full Text PDF