98%
921
2 minutes
20
Ecosystems shaped by habitat-modifying organisms such as reefs, vegetated coastal systems and peatlands, provide valuable ecosystem services, such as carbon storage and coastal protection. However, they are declining worldwide. Ecosystem restoration is a key tool for mitigating these losses but has proven failure-prone, because ecosystem stability often hinges on self-facilitation generated by emergent traits from habitat modifiers. Emergent traits are not expressed by the single individual, but emerge at the level of an aggregation: a minimum patch-size or density-threshold must be exceeded to generate self-facilitation. Self-facilitation has been successfully harnessed for restoration by clumping transplanted organisms, but requires large amounts of often-limiting and costly donor material. Recent advancements highlight that kickstarting self-facilitation by mimicking emergent traits can similarly increase restoration success. Here, we provide a framework for combining expertise from ecologists, engineers and industrial product designers to transition from trial-and-error to emergent trait design-based, cost-efficient approaches to support large-scale restoration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166460 | DOI Listing |
Evol Anthropol
September 2025
Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, USA.
Language is central to the cognitive and sociocultural traits that distinguish humans, yet the evolutionary emergence of this capacity is far from fully understood. This review explores how the study of the brains of language-trained apes (LTAs) offers a unique and valuable opportunity to tease apart the relative contribution of evolved species differences, behavior, and environment in the emergence of complex communication abilities. For example, when raised in sociolinguistically rich and interactive environments, LTAs show communicative competencies that parallel aspects of early human language acquisition and exhibit altered neuroanatomy, including increased connectivity and laterization in regions associated with language.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 Jiangsu Province, China.
Pectinases are indispensable biocatalysts for pectin degradation in food and bioprocessing industries, yet natural enzymes often lack tailored functionalities for modern applications. While a previous review discussed pectinases in terms of production and application, this review particularly discusses an integrated framework for robust pectinases. This framework combines enzyme mining, protein engineering, and AI-assisted design to systematically discover, optimize, and customize pectinases.
View Article and Find Full Text PDFJ Child Psychol Psychiatry
September 2025
Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
Background: Prospective studies of autism family history infants primarily report recurrence and predictors of autism at 3 years. Less is known about ADHD family history infants and later childhood outcomes. We characterise profiles of mid-childhood developmental and behavioural outcomes in infants with a family history of autism and/or ADHD to identify potential support needs and patterns of co-occurrence across domains.
View Article and Find Full Text PDFJ Exp Bot
September 2025
Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milan (MI), Italy.
Heterosis refers to the superior performance of hybrids over their parents (inbred lines) in one or more characteristics. Hence, understanding this process is crucial for addressing food insecurity. This review explores the traditional genetic models proposed to explain heterosis and integrates them with emerging perspectives such as epigenetic studies and multi-omics approaches which are increasingly used to investigate the molecular basis of heterosis in plants.
View Article and Find Full Text PDFCardiovasc Diabetol
September 2025
Computational Biomedicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany.
Background: Sodium-glucose cotransporter 2 (SGLT2) inhibitors, such as Empagliflozin, are antidiabetic drugs that reduce glucose levels and have emerged as a promising therapy for patients with heart failure (HF), although the exact molecular mechanisms underlying their cardioprotective effects remain to be fully elucidated. The EmDia study, a randomized, double-blind trial conducted at the University Medical Center of Mainz, has confirmed the beneficial effects of Empagliflozin in HF patients after both one and twelve weeks of treatment. In this work, we aimed to assess whether changes in lipid profiles driven by Empagliflozin use in HF patients in the EmDia trial could assist in gaining a better understanding of its cardioprotective mechanisms.
View Article and Find Full Text PDF