Advances in Pectinase Engineering for Food Bioprocessing: Novel Sources, Mechanisms, and Optimization Strategies.

J Agric Food Chem

School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 Jiangsu Province, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pectinases are indispensable biocatalysts for pectin degradation in food and bioprocessing industries, yet natural enzymes often lack tailored functionalities for modern applications. While a previous review discussed pectinases in terms of production and application, this review particularly discusses an integrated framework for robust pectinases. This framework combines enzyme mining, protein engineering, and AI-assisted design to systematically discover, optimize, and customize pectinases. These synergistic strategies, in fact, have been widely explored in recent years to enable precise development of biocatalysts with enhanced industrial traits, moving beyond traditional single-approach-based enzyme improvement. Specifically, we discuss how cutting-edge methodologies, such as data-driven discovery and intelligent protein engineering, accelerate robust pectinase development, while emerging purification and bioprocessing techniques expand their applications in juice/wine production, textile bioscouring, and agricultural waste valorization. By unifying novel microbial sources, mechanistic insights, and engineering advances, these holistic approaches offer transformative potential for biocatalyst development, including pectinases. In this way, this review consolidates recent progress to guide next-generation pectinase development through combinatorial biotechnology, providing actionable insights for advancing sustainable industrial processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.5c06547DOI Listing

Publication Analysis

Top Keywords

food bioprocessing
8
protein engineering
8
pectinase development
8
pectinases
5
advances pectinase
4
engineering
4
pectinase engineering
4
engineering food
4
bioprocessing novel
4
novel sources
4

Similar Publications

American black bear (Ursus americanus) as a potential host for Campylobacter jejuni.

PLoS One

September 2025

School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America.

The Gram-negative bacterium Campylobacter jejuni is part of the commensal gut microbiota of numerous animal species and a leading cause of bacterial foodborne illness in humans. Most complete genomes of C. jejuni are from strains isolated from human clinical, poultry, and ruminant samples.

View Article and Find Full Text PDF

Advances in Pectinase Engineering for Food Bioprocessing: Novel Sources, Mechanisms, and Optimization Strategies.

J Agric Food Chem

September 2025

School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 Jiangsu Province, China.

Pectinases are indispensable biocatalysts for pectin degradation in food and bioprocessing industries, yet natural enzymes often lack tailored functionalities for modern applications. While a previous review discussed pectinases in terms of production and application, this review particularly discusses an integrated framework for robust pectinases. This framework combines enzyme mining, protein engineering, and AI-assisted design to systematically discover, optimize, and customize pectinases.

View Article and Find Full Text PDF

Particles with some degree of hydrophilicity are known to aggregate when directly dispersed in non-aqueous media. Proteins are generally insoluble in oil and have complex surface properties, but they may form networks in oil like more simple colloidal particles, depending on particle size and surface hydrophilicity. Here, the particle size of pea protein isolate (PPI) particles in oil was reduced to submicron sizes by stirred media milling.

View Article and Find Full Text PDF

An adaptive and label-free colorimetric assay for EDTA using copper(II)-aptamer complexes as soft nanozymes.

Anal Chim Acta

November 2025

School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Hefei, 230009, China; Intelligent Interconnected Systems Laboratory of A

Background: Copper is a vital trace element that plays a crucial role in various physiological processes due to its ability to exist in multiple oxidation states. Inspired by natural enzymes, researchers have developed copper-based nanozymes that mimic enzyme functions, offering cost-effective and stable alternatives to traditional enzymes. Despite their promising properties, the design and synthesis of these nanozymes can be complex and challenging.

View Article and Find Full Text PDF

Valorisation of olive oil by-products into pectic- and glucuronoxylo-oligosaccharides via one-step fermentation.

Food Chem

September 2025

CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal. Electronic address:

Olive pomace (OLP) and stones (OLS) are key by-products of olive oil production, rich in lignocellulose and pectin, making them viable substrates for prebiotic oligosaccharide (OS) production. This study evaluated the chemical composition of OLP and OLS powders (OLPp and OLSp) and their potential for OS production through one-step fermentation using recombinant Bacillus subtilis 3610. Both substrates had comparable xylan and pectin levels, but OLSp showed greater potential, achieving a maximum total sugar yield of 60 ± 3 mg.

View Article and Find Full Text PDF