Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Viral inclusion bodies (IBs) are potential sites of viral replication and assembly. How viral IBs form remains poorly defined. Here we describe a combined biophysical and cellular approach to identify the components necessary for IB formation during Ebola virus (EBOV) infection. We find that the eNPVP35 complex containing Ebola nucleoprotein (eNP) and viral protein 35 (eVP35), the functional equivalents of nucleoprotein (N) and phosphoprotein (P) in non-segmented negative strand viruses (NNSVs), phase separates to form inclusion bodies. Phase separation of eNPVP35 is reversible and modulated by ionic strength. The multivalency of eVP35, and not eNP, is also critical for phase separation. Furthermore, overexpression of an eVP35 peptide disrupts eNPVP35 complex formation, leading to reduced frequency of IB formation and limited viral infection. Together, our results show that upon EBOV infection, the eNPVP35 complex forms the minimum unit to drive IB formation and viral replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11312838PMC
http://dx.doi.org/10.1016/j.jmb.2023.168241DOI Listing

Publication Analysis

Top Keywords

enpvp35 complex
12
viral infection
8
inclusion bodies
8
viral replication
8
ebov infection
8
phase separation
8
viral
7
disruption ebola
4
ebola npvp35
4
npvp35 inclusion
4

Similar Publications

Passivating detrimental defects is essential for improving perovskite solar cells (PSCs) performance. While hydrogen interstitials are often considered harmful, their role in defect passivation remains unclear. Using nonadiabatic molecular dynamics, we uncover a self-passivation mechanism between hydrogen (H) and bromine (Br) interstitials in all-inorganic CsPbBr perovskites.

View Article and Find Full Text PDF

Macroautophagy/autophagy is an evolutionarily conserved process through which cells degrade cytoplasmic substances via autophagosomes. During the initiation of autophagosome formation, the ULK/Atg1 complex serves as a scaffold that recruits and regulates downstream ATG/Atg proteins and ATG9/Atg9-containing vesicles. Despite the essential role of the ULK/Atg1 complex, its components have changed during evolution; the ULK complex in mammals consists of ULK1 (or ULK2), RB1CC1, ATG13, and ATG101, whereas the Atg1 complex in the yeast lacks Atg101 but instead has Atg29 and Atg31 along with Atg17.

View Article and Find Full Text PDF

Dynein-2 requires HSP90 chaperone activity to ensure robust retrograde IFT and ciliogenesis.

J Cell Sci

September 2025

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.

The microtubule motor dynein-2 is responsible for retrograde intraflagellar transport (IFT), a process critical for cilia assembly and cilium-dependent signaling. Mutations in genes encoding dynein-2 subunits interfere with ciliogenesis and are among the most frequent causes of skeletal ciliopathies. Despite its importance, little is known regarding dynein-2 assembly and regulation.

View Article and Find Full Text PDF

This work investigated the effect of zinc oxide nanoparticles functionalized with curcumin (ZnO+CUR) supplementation during the maturation (IVM) of bovine oocytes on the embryo production and the cellular antioxidant response. A total of 1,625 cumulus-oocyte complexes (COCs) were cultured in the maturation medium in the absence (0 µM - control) or presence of different concentrations of ZnO+CUR (3 µM, 6 µM or 12 µM). After IVM, COCs were destined either to 1) embryo production or 2) analysis of reactive oxygen species production, superoxide dismutase (SOD) activity, catalase (CAT) activity and total antioxidant capacity (FRAP).

View Article and Find Full Text PDF

Major ABO-Incompatible Platelet Transfusions Are Associated With Brain Ischemia After Intracerebral Hemorrhage.

Stroke

September 2025

Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York. (F.C.P., M.R., M.S., A.K., S.G., S.A., S.P., J.C., D.J.R.).

Background: Major ABO-incompatible platelet transfusions are associated with poor intracerebral hemorrhage (ICH) outcomes, yet drivers for this relationship remain unclear. Brain magnetic resonance imaging (MRI) ischemic lesions after ICH are neuroimaging biomarkers of secondary brain injury and are associated with poor outcomes. Given that ABO-incompatible platelet transfusions can induce immune complex formation, thrombo-inflammation, and endothelial barrier disruption, factors that could exacerbate cerebral ischemia, we explored whether major ABO-incompatible platelet transfusions are risk factors for ischemic lesions on brain MRI after ICH.

View Article and Find Full Text PDF