Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stroke stands as a major cause of death or chronic disability globally. Nevertheless, existing optimal treatments are limited to reperfusion therapies during the acute phase of ischemic stroke. To gain insights into stroke physiopathology and develop innovative therapeutic approaches, in vivo rodent models of stroke play a fundamental role. The availability of genetically modified animals has particularly propelled the use of mice as experimental stroke models. In stroke patients, occlusion of the middle cerebral artery (MCA) is a common occurrence. Consequently, the most prevalent experimental model involves intraluminal occlusion of the MCA, a minimally invasive technique that doesn't require craniectomy. This procedure involves inserting a monofilament through the external carotid artery (ECA) and advancing it through the internal carotid artery (ICA) until it reaches the branching point of the MCA. After a 45 min arterial occlusion, the monofilament is removed to allow reperfusion. Throughout the process, cerebral blood flow is monitored to confirm the reduction during occlusion and subsequent recovery upon reperfusion. Neurological and tissue outcomes are evaluated using behavioral tests and magnetic resonance imaging (MRI) studies.

Download full-text PDF

Source
http://dx.doi.org/10.3791/65857DOI Listing

Publication Analysis

Top Keywords

middle cerebral
8
cerebral artery
8
models stroke
8
carotid artery
8
stroke
7
occlusion
5
transient middle
4
artery
4
artery occlusion
4
occlusion model
4

Similar Publications

Adenosine A receptors (AARs) have shown promising therapeutic properties despite their controversial role in modulating stroke outcome. However, the temporal evolution of cerebral AARs density after cerebral ischemia and its subsequent neuroinflammatory response have been scarcely explored. In this study, the expression of AARs after transient middle cerebral artery occlusion (MCAO) was evaluated in rats by positron emission tomography (PET) with [C]SCH442416 and immunohistochemistry (IHC).

View Article and Find Full Text PDF

Background: Cerebrovascular reactivity reflects changes in cerebral blood flow in response to an acute stimulus and is reflective of the brain's ability to match blood flow to demand. Functional MRI with a breath-hold task can be used to elicit this vasoactive response, but data validity hinges on subject compliance. Determining breath-hold compliance often requires external monitoring equipment.

View Article and Find Full Text PDF

Kommerell's diverticulum (KD) combined with a right-sided aortic arch (RAA) and an aberrant left subclavian artery (ALSA) is a rare congenital vascular anomaly causing significant compressive dysphagia. Treatment options, including open surgery, thoracic endovascular aortic repair and hybrid approaches, are debated due to anatomical complexities. We report a 48-year-old female with dysphagia from symptomatic KD, RAA and ALSA, clearly delineated by preoperative computed tomography angiography.

View Article and Find Full Text PDF

Aims: Decoding the motor intention by electroencephalography to control external devices is an effective method of helping spinal cord injury (SCI) patients to regain motor function. Still, SCI patients have much lower accuracy in the decoding of motor intentions compared to healthy individuals, which severely hampers the clinical application. However, the underlying neural mechanisms are still unknown.

View Article and Find Full Text PDF

Introduction: Randomised controlled trials comparing endovascular thrombectomy (EVT) to medical treatment in patients with medium vessel occlusion (MeVO) suggested neutrality or futility of EVT. We studied whether the size difference between thrombectomy device and the occluded vessel influenced MeVO outcomes.

Patients And Methods: This was a retrospective single-centre observational study comprising EVT-treated patients with occlusion of the M2 branch of the middle cerebral artery on digital subtraction angiography.

View Article and Find Full Text PDF