Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

AMBRA1 is a crucial factor for nervous system development, and its function has been mainly associated with autophagy. It has been also linked to cell proliferation control, through its ability to regulate c-Myc and D-type cyclins protein levels, thus regulating G1-S transition. However, it remains still unknown whether AMBRA1 is differentially regulated during the cell cycle, and if this pro-autophagy protein exerts a direct role in controlling mitosis too. Here we show that AMBRA1 is phosphorylated during mitosis on multiple sites by CDK1 and PLK1, two mitotic kinases. Moreover, we demonstrate that AMBRA1 phosphorylation at mitosis is required for a proper spindle function and orientation, driven by NUMA1 protein. Indeed, we show that the localization and/or dynamics of NUMA1 are strictly dependent on AMBRA1 presence, phosphorylation and binding ability. Since spindle orientation is critical for tissue morphogenesis and differentiation, our findings could account for an additional role of AMBRA1 in development and cancer ontogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432340PMC
http://dx.doi.org/10.1007/s00018-023-04878-6DOI Listing

Publication Analysis

Top Keywords

ambra1 phosphorylation
8
cdk1 plk1
8
spindle orientation
8
ambra1
7
phosphorylation cdk1
4
plk1 regulates
4
regulates mitotic
4
mitotic spindle
4
orientation ambra1
4
ambra1 crucial
4

Similar Publications

Mechanism of D-type cyclin recognition by the AMBRA1 E3 ligase receptor.

Sci Adv

May 2025

Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.

AMBRA1 is a tumor suppressor protein that functions as a substrate receptor in the ubiquitin conjugation system and regulates the stability of D-type cyclins and cell proliferation. Here, we present the cryo-EM structure of cyclin D1-bound AMBRA1-DDB1 complex at 3.55-Å resolution.

View Article and Find Full Text PDF

Tumorigenesis is closely linked to the ability of cancer cells to activate stress-adaptive mechanisms in response to various cellular stressors. Stress granules (SGs) play a crucial role in promoting cancer cell survival, invasion, and treatment resistance, and influence tumor immune escape by protecting essential mRNAs involved in cell metabolism, signaling, and stress responses. TBK1 (TANK binding kinase 1) functions in antiviral innate immunity, cell survival, and proliferation in both the tumor microenvironment and tumor cells.

View Article and Find Full Text PDF

The ULK1 kinase complex plays a crucial role in autophagosome biogenesis. To identify interactors or regulators of ULK1 complex assembly influencing autophagosome biogenesis, we performed an interaction proteomics screen. Employing both affinity purification and proximity labeling of - and -terminal tagged fusion proteins coupled to quantitative mass spectrometry, we identified 317 high-confidence interactors or neighbors of the four ULK1 complex members, including both member-specific and common interactors.

View Article and Find Full Text PDF

Melatonin, the hormone of the pineal gland, possesses a range of physiological functions, and recently, its anticancer effect has become more apparent. A more thorough understanding of molecular alterations in the components of several signaling pathways as new targets for cancer therapy is needed because of current innate restrictions such as drug toxicity, side effects, and acquired or de novo resistance. The PI3K/Akt/mTOR pathway is overactivated in many solid tumors, such as breast and ovarian cancers.

View Article and Find Full Text PDF

Autophagy initiation is regulated by the ULK1 kinase complex. To gain insights into functions of the holo-complex, we generated a deep interactome by combining affinity purification- and proximity labeling-mass spectrometry of all four complex members: ULK1, ATG13, ATG101, and RB1CC1/FIP200. Under starvation conditions, the ULK1 complex interacts with several protein and lipid kinases and phosphatases, implying the formation of a signalosome.

View Article and Find Full Text PDF