A Prognostic Model Based on Metabolism-Related Genes for Patients with Ovarian Cancer.

Dokl Biochem Biophys

Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 710032, Shaanxi Xi'an, China.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Metabolism-associated genes (MAGs) are important regulators of tumor progression and can affect a variety of physiological processes. In this study, we focused on the relationship between MAGs and Ovarian cancer (OC) prognosis.

Method: Metabolism-related genes were extracted from the Cancer Genome Atlas (TCGA) database. Through univariate COX and lasso regression models, a dynamic risk model based on MAGs was established. Compared with other clinical factors, demonstrated the ability of the model to predict the prognosis of patients with OC. The clinical samples were used to verify the expression of these MAGs.

Results: A metabolism-associated gene signature was constructed by LASSO Cox regression analysis in OC, which was composed of 3-MAGs (PTGIS, AOC3, and IDO1). The signature was used to classify the OC patients into high-risk and low-risk groups. The overall survival of the low-risk group was significantly better than that of the high-risk group. The analysis of the therapeutic effect of bevacizumab showed that bevacizumab was not conducive to improving the prognosis of the low-risk group.

Conclusions: We constructed a prognostic model of MAGs in OC, which can be used to predict the prognosis of OC patients and may have a good guiding significance in the individualized treatment of patients.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S1607672923600082DOI Listing

Publication Analysis

Top Keywords

prognostic model
8
model based
8
metabolism-related genes
8
ovarian cancer
8
predict prognosis
8
prognosis patients
8
patients
5
based metabolism-related
4
genes patients
4
patients ovarian
4

Similar Publications

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Background: Severe acute pancreatitis (SAP) is a life-threatening condition requiring early risk stratification. While the Bedside Index for Severity in Acute Pancreatitis (BISAP) is widely used, its reliance on complex parameters limits its applicability in resource-constrained settings. This study introduces a decision tree model based on Classification and Regression Tree (CART) analysis, utilizing Neutrophil-to-Lymphocyte Ratio (NLR) and C-reactive Protein (CRP), as a simpler alternative for early SAP prediction.

View Article and Find Full Text PDF

Rationale And Objectives: Double expression lymphoma (DEL) is an independent high-risk prognostic factor for primary CNS lymphoma (PCNSL), and its diagnosis currently relies on invasive methods. This study first integrates radiomics and habitat radiomics features to enhance preoperative DEL status prediction models via intratumoral heterogeneity analysis.

Materials And Methods: Clinical, pathological, and MRI imaging data of 139 PCNSL patients from two independent centers were collected.

View Article and Find Full Text PDF

Objective: To develop and validate a prognostic nomogram for predicting the risk of proximal ureteral impacted calculi, supporting personalized clinical management.

Methods: This retrospective, multicenter study employed a continuous cohort of 391 patients with proximal ureteral stones treated between January 2021 and April 2024. Data from Longyan People's Hospital (affiliated with Xiamen Medical College) comprised the training set, while independent external validation was performed using data from The Fifth Affiliated Hospital of Fujian University of Traditional Chinese Medicine.

View Article and Find Full Text PDF

Prognostic value of multiparameter [Ga]Ga-DOTA-FAPI-04 PET/MR imaging biomarkers for patients with advanced pancreatic cancer.

Eur J Nucl Med Mol Imaging

September 2025

Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China.

Purpose: In this retrospective study, whether [Ga]Ga-DOTA-FAPI-04 PET/MR imaging biomarkers can predict the progression-free survival (PFS) and overall survival (OS) of patients with advanced pancreatic cancer was investigated.

Methods: Fifty-one patients who underwent [Ga]Ga-DOTA-FAPI-04 PET/MR scans before first-line chemotherapy were recruited. Imaging biomarkers, including the maximum tumor diameter, minimum apparent diffusion coefficient (ADC), maximum and mean standardized uptake values (SUV and SUV), fibroblast activation protein- (FAP-) positive tumor volume (FTV and W-FTV) and total lesion FAP expression (TLF and W-TLF), were recorded for primary and whole-body tumors.

View Article and Find Full Text PDF