98%
921
2 minutes
20
Purpose: The study is intended to perform an end-to-end test of the entire intraoperative process using cadaver heads. A simulation of tumor removal was performed, followed by irradiation of the bed and measurement of absorbed doses with radiochromic films.
Materials And Methods: Low-energy X-ray intraoperative radiotherapy (IORT) was used for irradiation. A computed tomography study was performed at each site and the absorbed doses calculated by the treatment planning system, as well as absorbed doses with radiochromic films, were studied.
Results: The absorbed doses in the organs at risk (OAR) were evaluated in each case, obtaining maximum doses within the tolerance limits. The absorbed doses in the target were verified and the deviations were <1%.
Conclusions: These tests demonstrated that this comprehensive procedure is a reproducible quality assurance tool which allows continuous assessment of the dosimetric and geometric accuracy of clinical brain IORT treatments. Furthermore, the absorbed doses measured in both target and OAR are optimal for these treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419752 | PMC |
http://dx.doi.org/10.4103/jmp.jmp_18_23 | DOI Listing |
Radiat Res
August 2025
Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, China.
High-energy neutron radiation (HENR) induces severe cellular and tissue damage, yet effective prophylactic agents remain limited. In this study, the TLR2/NOD2 co-agonist CL429 was evaluated for its radioprotective potential against 14.1 MeV neutron exposure.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China. Electronic address:
Efficient water-absorbing and water-holding materials have shown notable promise in various applications, including hygiene products, agriculture, and drug delivery systems. Opposed to traditional absorbents prepared using synthetic polymers, bio-based, environmentally friendly efficient absorbents have attracted more attention from both academia and the industry. Herein, the aerogel absorbents from functional sodium carboxymethyl cellulose (CMCNa), citric acid (CA) crosslinker, and cellulose nanofibers (CNF) have been developed via freeze-drying and cross-linking process.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
Internal Clinic, 3rd Medical Faculty, Charles University and University Thomayer Hospital, Prague, Czechia.
Objectives: The absorption of conventional cholecalciferol may be impaired in patients with inflammatory bowel disease (IBD). The bioavailability and optimal dosing of buccally absorbable nanoemulsion vitamin D in this population remain unclear. This study aimed to compare the effects of buccal nanoemulsion and conventional oral vitamin D supplementation on serum 25-hydroxyvitamin D (25OHD) levels in patients with IBD.
View Article and Find Full Text PDFRadiat Environ Biophys
September 2025
Environmental Physics Department, Institute for Energy Security and Environmental Safety, HUN-REN Centre for Energy Research, Budapest, Hungary.
Variability in radiation-related health risk and genetic susceptibility to radiation effects within a population is a key issue for radiation protection. Besides differences in the health and biological effects of the same radiation dose, individual variability may also affect dose distribution and its consequences for the same exposure. As exposure to radon progeny affects a large population and has a well-established dose-effect relationship, investigating individual variability upon radon exposure may be particularly important.
View Article and Find Full Text PDFEnviron Res
September 2025
College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan,P.R.China; Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, P.R.China.
Naturally occurring radioactive materials (NORM) are present in waste generated during shale gas drilling activities and pose potential risks to the environment, drawing increasing public and scientific attention. In this study, soil, wastewater and effluent samples were collected across multiple operational stages of shale gas development in Southwest China. A combination of in-situ gamma absorbed dose rate in air, soil radon concentration, radionuclide activity concentrations, and conventional hazard indices was used to evaluate environmental radioactivity and potential occupational exposure.
View Article and Find Full Text PDF