98%
921
2 minutes
20
In the past decades, surrogate-assisted evolutionary algorithms (SAEAs) have become one of the most popular methods to solve expensive multi-objective optimization problems (EMOPs). However, most existing methods focus on low-dimensional EMOPs because a large number of training samples are required to build accurate surrogate models, which is unrealistic for high-dimensional EMOPs. Therefore, this paper develops a two-stage dominance-based surrogate-assisted evolution algorithm (TSDEA) for high-dimensional EMOPs which utilizes the RBF model to approximate each objective function. First, a two-stage selection strategy is applied to select individuals for re-evaluation. Then considering the training time of the model, proposing a novel archive updating strategy to limit the number of individuals for updating. Experimental results show that the proposed algorithm has promising performance and computational efficiency compared to the state-of-the-art five SAEAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423721 | PMC |
http://dx.doi.org/10.1038/s41598-023-40019-6 | DOI Listing |
Sci Rep
August 2023
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, 310015, China.
In the past decades, surrogate-assisted evolutionary algorithms (SAEAs) have become one of the most popular methods to solve expensive multi-objective optimization problems (EMOPs). However, most existing methods focus on low-dimensional EMOPs because a large number of training samples are required to build accurate surrogate models, which is unrealistic for high-dimensional EMOPs. Therefore, this paper develops a two-stage dominance-based surrogate-assisted evolution algorithm (TSDEA) for high-dimensional EMOPs which utilizes the RBF model to approximate each objective function.
View Article and Find Full Text PDF