98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brs.2023.08.004 | DOI Listing |
Neurol Res
September 2025
Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
Background: Spinal Cord Injury (SCI) leads to partial or complete sensorimotor loss because of the spinal lesions caused either by trauma or any pathological conditions. Rehabilitation, one of the therapeutic methods, is considered to be a significant part of therapy supporting patients with spinal cord injury. Newer methods are being incorporated, such as repetitive Transcranial Magnetic Stimulation (rTMS), a Non-Invasive Brain Stimulation (NIBS) technique to induce changes in the residual neuronal pathways, facilitating cortical excitability and neuroplasticity.
View Article and Find Full Text PDFNeuroimage
September 2025
Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark, Kettegård Allé 30, 2650 Hvidovre, Denmark; Institute of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N,
Background: We recently demonstrated that single-pulse TMS of the primary sensorimotor hand area (SM1) elicits an immediate transcranial evoked potential (iTEP). This iTEP response appears within 2-8 ms post-TMS, featuring high-frequency peaks superimposed on a slow positive wave. Here, we used a linear TMS-EEG mapping approach to characterize the rostro-caudal iTEP expression and compared it to that of motor-evoked potentials (MEPs).
View Article and Find Full Text PDFIndian J Psychiatry
August 2025
Department of Psychiatry, Serenity Clinic, New Delhi, India.
Background: Cognitive deficits significantly contribute to the disability related to schizophrenia.
Aim: We aim to evaluate the efficacy of high-frequency rTMS intervention in the improvement of cognitive symptoms in schizophrenia.
Methods: One-hundred patients of predominantly negative schizophrenia having cognitive deficits were enrolled for this randomized, sham controlled, double-blind trial.
Brain Stimul
September 2025
Research Service, VA San Diego Healthcare System, La Jolla, CA, 92161, USA; NEATLabs, Department of Psychiatry, UC San Diego, La Jolla, CA, 92093, USA; Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, 92161, USA; Mental Health Care Line, VA San Diego H
Background: Repetitive brain stimulation is hypothesized to bidirectionally modulate excitability, with low-frequency trains decreasing and high-frequency (>5 Hz) trains increasing excitability in the brain. However, most insights on the neuroplastic effects of repetitive stimulation protocols stem from non-invasive human studies (TMS/EEG) or from rodent slice physiology. Here, we developed a rodent experimental preparation enabling imaging of cellular activity during repetitive stimulation protocols in vivo to understand the mechanisms by which brain stimulation modulates excitability of prefrontal cortical neurons.
View Article and Find Full Text PDFTop Stroke Rehabil
September 2025
Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.
Objective: To investigate the effects of 10 Hz repetitive transcranial magnetic stimulation (rTMS) targeting the supplementary motor area (SMA) on balance and postural control in patients with stroke.
Methods: In this randomized controlled trial, 40 patients withbalance disorders were randomly assigned to either the transcranial magneticstimulation (TMS) group ( = 20) or the sham group ( = 20). Both groups underwent a two-week standardized physical therapy.