98%
921
2 minutes
20
This work presented a novel ratiometric fluorescent probe (NBO) based on benzothiazole dye, which could monitor the pH fluctuations with high sensitivity via the intramolecular charge transfer (ICT) process. NBO was developed with a good linear response in the pH range of 5.75-7.00 (pKa = 6.5) and a reversible structural change in acidic and alkaline environments. Besides, NBO also has the potential to detect the viscosity changes. Meanwhile, NBO has been successfully applied to the pH monitoring of a variety of water samples in natural environment and human serum. With the treatment of different solutions at pH 2.0 - pH 9.0, the test strips showed significant color changes under both 365 nm UV lamp and room light. When the test strips were applied to white wine, pH could be detected quickly and easily by the naked eyes. Therefore, a novel probe that can be used to detect pH in environment, human serum and food has been successfully developed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.125049 | DOI Listing |
J Biomed Opt
September 2025
Fraunhofer Institute for Microelectronic Circuits and Systems IMS, Duisburg, Germany.
Significance: The spatial and temporal distribution of fluorophore fractions in biological and environmental systems contains valuable information about the interactions and dynamics of these systems. To access this information, fluorophore fractions are commonly determined by means of their fluorescence emission spectrum (ES) or lifetime (LT). Combining both dimensions in temporal-spectral multiplexed data enables more accurate fraction determination while requiring advanced and fast analysis methods to handle the increased data complexity and size.
View Article and Find Full Text PDFRSC Chem Biol
September 2025
Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet 17165 Solna Sweden
Labeling the plasma membrane for advanced imaging remains a significant challenge. For time-lapse live cell imaging, probe internalization and photobleaching are major limitations affecting most membrane-specific dyes. In fixed or permeabilized cells, many membrane probes either lose signal after fixation or fail to remain localized to the plasma membrane.
View Article and Find Full Text PDFChem Sci
September 2025
Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
As a cutting-edge super-resolution imaging technique, structured illumination microscopy (SIM) has been widely used in cell biology research, especially in the analysis of subcellular organelles and monitoring of their dynamic processes. Through multiple illumination and reconstruction processes, SIM breaks through the resolution limitations of traditional microscopes and can observe the fine structures within cells in real time with nanoscale resolution. This provides strong technical support for in-depth analyses of molecular mechanisms, organelle functions, signaling networks, and metabolic regulatory pathways within cells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.
Controlled photoactivation is an auspicious and emerging approach in super-resolution microscopy, offering virtually zero background signal from the marker prior to activation. Pyronins are well-established fluorophores, but due to their inherent intercalating tendency towards nucleic acids, their use has been mostly avoided in super-resolution microscopy. Here, we describe a new class of diaryl ether and diaryl silane molecules that upon photoactivation close into fluorescent (silicon-)pyronins and term them Pyronin Upon Light Irradiation (PULI).
View Article and Find Full Text PDFJ Phys Chem B
September 2025
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
Eutectogels have emerged as versatile materials for wearable electronics, optical sensors, and biomedical applications. This study introduced the first investigation of microenvironmental basicity in poly(vinyl alcohol)/choline chloride (PVA/ChCl) eutectogels using lumichrome as a fluorescent probe. The incorporation of ChCl was demonstrated to enhance the microbasicity of PVA films, as evidenced by the significant promotion of lumichrome deprotonation.
View Article and Find Full Text PDF