98%
921
2 minutes
20
High-throughput, multiplexed-amplicon sequencing has become a core tool for understanding environmental microbiomes. As researchers have widely adopted sequencing, many open-source analysis pipelines have been developed to compare microbiomes using compositional analysis frameworks. However, there is increasing evidence that compositional analyses do not provide the information necessary to accurately interpret many community assembly processes. This is especially true when there are large gradients that drive distinct community assembly processes. Recently, sequencing has been combined with Q-PCR (among other sources of total quantitation) to generate "Quantitative Sequencing" (QSeq) data. QSeq more accurately estimates the true abundance of taxa, is a more reliable basis for inferring correlation, and, ultimately, can be more reliably related to environmental data to infer community assembly processes. In this paper, we use a combination of published data sets, synthesis, and empirical modeling to offer guidance for which contexts QSeq is advantageous. As little as 5% variation in total abundance among experimental groups resulted in more accurate inference by QSeq than compositional methods. Compositional methods for differential abundance and correlation unreliably detected patterns in abundance and covariance when there was greater than 20% variation in total abundance among experimental groups. Whether QSeq performs better for beta diversity analysis depends on the question being asked, and the analytic strategy (e.g., what distance metric is being used); for many questions and methods, QSeq and compositional analysis are equivalent for beta diversity analysis. QSeq is especially useful for taxon-specific analysis; QSeq transformation and analysis should be the default for answering taxon-specific questions of amplicon sequence data. Publicly available bioinformatics pipelines should incorporate support for QSeq transformation and analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-023-02273-z | DOI Listing |
J Environ Manage
September 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China.
The fragmented ecological environment in the mining ecosystem has a significant impact on the microbial community and affects ecosystem stability. Arbuscular mycorrhizal fungi (AMF) facilitate nutrient exchange and element cycling between soil and plants, which play a crucial role in the functionality and stability of soil ecosystems. However, the mechanism of ecological environment factors influencing AMF community assembly in mining areas is still unclear.
View Article and Find Full Text PDFPLoS Biol
September 2025
Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.
Inter-laboratory replicability is crucial yet challenging in microbiome research. Leveraging microbiomes to promote soil health and plant growth requires understanding underlying molecular mechanisms using reproducible experimental systems. In a global collaborative effort involving five laboratories, we aimed to help advance reproducibility in microbiome studies by testing our ability to replicate synthetic community assembly experiments.
View Article and Find Full Text PDFmSystems
September 2025
Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
Genome-scale metabolic models (GEMs) are widely used in systems biology to investigate metabolism and predict perturbation responses. Automatic GEM reconstruction tools generate GEMs with different properties and predictive capacities for the same organism. Since different models can excel at different tasks, combining them can increase metabolic network certainty and enhance model performance.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.
Unlabelled: Anaerobic ammonium oxidation (anammox) plays a critical role in nitrogen loss in estuarine and marine environments. However, the mechanisms underlying the formation and maintenance of the anammox bacterial community remain unclear. This study analyzed the anammox bacterial diversity, community structure, and interspecific relationships in three estuaries along the Chinese coastline -the Changjiang Estuary (CJE), the Oujiang Estuary (OJE), and the Jiulong River Estuary (JLE) - as well as the South China Sea (SCS) to elucidate their community assembly mechanisms.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
State Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China.
Unlabelled: Ecological succession is vital for forecasting ecosystem responses to environmental changes and their future states. Zooplankton, a primary natural food source in aquaculture, plays a crucial role in maintaining ecosystem function. Thus, understanding how zooplankton communities respond to environmental changes is essential for economic and ecological outcomes.
View Article and Find Full Text PDF