Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Humans can navigate through similar environments-like grocery stores-by integrating across their memories to extract commonalities or by differentiating between each to find idiosyncratic locations. Here, we investigate one factor that might impact whether two related spatial memories are integrated or differentiated: Namely, the temporal delay between experiences. Rodents have been shown to integrate memories more often when they are formed within 6 hours of each other. To test if this effect influences how humans spontaneously integrate spatial memories, we had 131 participants search for rewards in two similar virtual environments. We separated these learning experiences by either 30 minutes, 3 hours, or 27 hours. Memory integration was assessed three days later. Participants were able to integrate and simultaneously differentiate related memories across experiences. However, neither memory integration nor differentiation was modulated by temporal delay, in contrast to previous work. We further showed that both the levels of initial memory reactivation during the second experience and memory generalization to novel environments were comparable across conditions. Moreover, perseveration toward the initial reward locations during the second experience was related positively to integration and negatively to differentiation-but again, these associations did not vary by delay. Our findings identify important boundary conditions on the translation of rodent memory mechanisms to humans, motivating more research to characterize how even fundamental memory mechanisms are conserved and diverge across species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414573 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289649 | PLOS |