RNA methyladenosine of and involves in regulation of diapause of via the lipid metabolism pathway.

Bull Entomol Res

Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Environment-induced epigenetics are involved in diapause regulation, but the molecular mechanism that epigenetically couples nutrient metabolism to diapause regulation remains unclear. In this study, we paid special attention to the significant differences in the level of -adenosine methylation (mA) of dihydroxyacetone phosphate acyltransferase () and phosphatidate phosphatase () genes in the lipid metabolism pathway of the bivoltine silkworm () strain Qiufeng developed from eggs incubated at a normal temperature (QFHT, diapause egg producer) compared to those from eggs incubated at a low temperature (QFLT, non-diapause egg producer). We knocked down in the pupal stage of the QFLT group, resulting in the non-diapause destined eggs becoming diapausing eggs. In the knockdown group, the colour of the non-diapause destined eggs changed from light yellow to pink 3 days after oviposition, but they hatched as normal. Moreover, we validated that YTHDF3 binds to mA-modified and mRNAs to promote their stability and translation. These results suggest that RNA mA methylation participates in the diapause regulation of silkworm by changing the expression levels of and and reveal that mA epigenetic modification can be combined with a lipid metabolism signal pathway to participate in the regulation of insect diapause traits, which provides a clearer image for exploring the physiological basis of insect diapause.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007485323000330DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
12
diapause regulation
12
metabolism pathway
8
eggs incubated
8
egg producer
8
non-diapause destined
8
destined eggs
8
insect diapause
8
diapause
7
regulation
5

Similar Publications

Dynamics of Conventional Metabolic Indices in Relation to Endometriosis Severity: A Retrospective Analysis.

Int J Gen Med

September 2025

Department of Gynecology, Zhongshan Hospital, Fudan University, Shanghai, 200035, People's Republic of China.

Objective: This study aims to investigate the association between the dynamics of routine metabolic markers and endometriosis severity.

Methods: A retrospective analysis was conducted on patients diagnosed with endometriosis at Zhongshan Hospital, Xiamen, affiliated with Fudan University. The collected data encompassed demographic details and biochemical indicators related to lipid, hepatobiliary, renal metabolism, and electrolyte balance.

View Article and Find Full Text PDF

Species-specific gene expression manipulation in humanized livers of chimeric mice via siRNA-encapsulated lipid nanoparticle treatment.

Mol Ther Methods Clin Dev

June 2025

Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.

Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.

View Article and Find Full Text PDF

S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, with abdominal fat, particularly visceral fat, closely associated with its onset and progression. While the lipid accumulation product (LAP) has been linked to COPD risk, it is not sufficient to fully reflect the level of visceral fat. In contrast, the body roundness index (BRI), a more accurate measure of abdominal fat distribution, has not been fully explored in relation to COPD.

View Article and Find Full Text PDF