98%
921
2 minutes
20
Significance Statement: Activation of the type 1 IL-1 receptor (IL-1R1) triggers a critical innate immune signaling cascade that contributes to the pathogenesis of AKI. However, blockade of IL-1 signaling in AKI has not consistently demonstrated kidney protection. The current murine experiments show that IL-1R1 activation in the proximal tubule exacerbates toxin-induced AKI and cell death through local suppression of apolipoprotein M. By contrast, IL-1R1 activation in endothelial cells ameliorates AKI by restoring VEGFA-dependent endothelial cell viability. Using this information, future delivery strategies can maximize the protective effects of blocking IL-1R1 while mitigating unwanted actions of IL-1R1 manipulation.
Background: Activation of the type 1 IL-1 receptor (IL-1R1) triggers a critical innate immune signaling cascade that contributes to the pathogenesis of AKI. IL-1R1 is expressed on some myeloid cell populations and on multiple kidney cell lineages, including tubular and endothelial cells. Pharmacological inhibition of the IL-1R1 does not consistently protect the kidney from injury, suggesting there may be complex, cell-specific effects of IL-1R1 stimulation in AKI.
Methods: To examine expression of IL-1 and IL-1R1 in intrinsic renal versus infiltrating immune cell populations during AKI, we analyzed single-cell RNA sequencing (scRNA-seq) data from kidney tissues of humans with AKI and mice with acute aristolochic acid exposure. We then investigated cell-specific contributions of renal IL-1R1 signaling to AKI using scRNA-seq, RNA microarray, and pharmacological interventions in mice with IL-1R1 deletion restricted to the proximal tubule or endothelium.
Results: scRNA-seq analyses demonstrated robust IL-1 expression in myeloid cell populations and low-level IL-1R1 expression in kidney parenchymal cells during toxin-induced AKI. Our genetic studies showed that IL-1R1 activation in the proximal tubule exacerbated toxin-induced AKI and cell death through local suppression of apolipoprotein M. By contrast, IL-1R1 activation in endothelial cells ameliorated aristolochic acid-induced AKI by restoring VEGFA-dependent endothelial cell viability and density.
Conclusions: These data highlight opposing cell-specific effects of IL-1 receptor signaling on AKI after toxin exposure. Disrupting pathways activated by IL-1R1 in the tubule, while preserving those triggered by IL-1R1 activation on endothelial cells, may afford renoprotection exceeding that of global IL-1R1 inhibition while mitigating unwanted actions of IL-1R1 blockade.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561822 | PMC |
http://dx.doi.org/10.1681/ASN.0000000000000191 | DOI Listing |
J Inflamm Res
September 2025
Department of the Head and Neck, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, People's Republic of China.
Background: Immune escape of tumor cells is a common problem with tumor photothermal therapy utilizing gold nanorods (Au NRs). Whether CpG ODN, an immune adjuvant, can synergize with Au NRs to activate the immune response and its potential mechanism is not clear.
Methods: The effect of Au NRs combined with CpG ODN (Au NRs-C) on the activity of various immune-related cells, such as double-positive T cells, macrophages, NK cells, Th17, and Treg.
Front Pharmacol
August 2025
Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.
Background: Epilepsy is a chronic and complex brain disorder characterized by frequent seizures, cognitive impairments, neuroinflammation, oxidative stress, and imbalances in neurotransmitters. Developing an effective therapeutic intervention to target these pathological interventions remains a challenge. Trimetazidine (TMZ), the most commonly known anti-ischemic agent, has emerged as a promising candidate for its role in epilepsy due to its diverse mechanisms of action.
View Article and Find Full Text PDFFree Radic Biol Med
August 2025
The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, China; The Innovation Center of Cardiometabolic Disease, Guangdong Medical University, Dongguan, China. Electronic address:
Background: Aerobic exercise (AE) confers protection against acute kidney injury (AKI), but mechanisms remain incompletely elucidated. We investigated how AE preconditioning protects against sepsis-induced AKI through transcriptomic reprogramming, inflammatory regulation, autophagy modulation, and metabolic adaptation.
Methods: Mice were subjected to 4-week AE before AKI induction.
BMC Genomics
August 2025
CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia.
Comprehensive characterization of bovine immune cell populations is essential for improving animal welfare and disease resilience. We performed single-cell RNA sequencing on over 29,000 peripheral blood mononuclear cells (PBMCs) from Angus cattle stratified by delayed-type hypersensitivity (DTH), a proxy for the cellular immune response (Cell-IR). Unsupervised clustering identified major immune populations including CD4 and CD8 T cells, γδ T cells, B cells, monocytes, and dendritic cells.
View Article and Find Full Text PDFArch Biochem Biophys
October 2025
Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. Electronic address:
Sepsis-Associated Encephalopathy (SAE), a disorder affecting the central nervous system (CNS), is highly prevalent, occurring in approximately 70 % of sepsis patients in intensive care units (ICU). Although numerous studies have highlighted the critical role of IL-1β in the pathogenesis of SAE, the specific downstream mechanisms remain poorly understood. Moreover, the Phase III clinical trial of IL-1R1 antagonists for SAE therapy ended in failure.
View Article and Find Full Text PDF