Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Solid-state lithium-metal batteries constructed by in-situ solidification of cyclic ether are considered to be a critical strategy for the next generation of solid-state batteries with high energy density and safety. However, the poor thermal/electrochemical stability of linear polyethers and severe interfacial reactions limit its further development. Herein, in-situ ring-opening hybrid crosslinked polymerization is proposed for organic/inorganic hybrid polymer electrolyte (HCPE) with superior ionic conductivity of 2.22 × 10 S cm at 30 °C, ultrahigh Li transference number of 0.88, and wide electrochemical stability window of 5.2 V. These allow highly stable lithium stripping/plating cycling for over 1000 h at 1 mA cm , which also reveal a well-defined interfacial stabilization mechanism. Thus, HCPE endows assembled solid-state lithium-metal batteries with excellent long-cycle performance over 600 cycles at 2 C (25 °C) and superior capacity retention of 92.1%. More importantly, the proposed noncombustible HCPE opens up a new frontier to promote the practical application of high safety and high energy density solid-state batteries via in-situ solidification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202304686 | DOI Listing |