Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The endophytic fungus WBS017 exhibits broad-spectrum activity against plant pathogens, with particular effectiveness against . Subsequently, a compound is isolated from strain WBS017 as the main active ingredient against using activity-guided separation and identified as hybrid polyketide (namely cladodionen, CLD) using UV, MS, NMR, etc. In vitro and in vivo antifungal activity tests demonstrate that CLD effectively inhibits the mycelial growth and spore germination, with an IC value of 1.13 and 0.095 mM, respectively, and exerts antifungal and fresh-keeping effects on both strawberry and tomato. Microscopy analysis reveals that the inhibitory effects of CLD on hyphae and spore germination are attributed to a decrease in structural stability of mycelia cells as well as the accumulation of reactive oxygen species (ROS). Furthermore, transcriptome analysis further indicates that spore germination is inhibited by suppressing the transcription levels of membrane or membrane-related genes, disturbing the balance of ROS metabolism, altering the primary metabolic pathways, genetic information processing, and cellular processes. Importantly, CLD demonstrates no significant toxicity on zebrafish embryos even at a concentration of 0.226 mM, indicating its potential as a safe biological-control agent. In summary, CLD would be a novel potential biological-control agent and can be considered as a promising fungicide to control .

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.3c02408DOI Listing

Publication Analysis

Top Keywords

spore germination
12
hybrid polyketide
8
biological-control agent
8
cld
5
discovery natural
4
natural hybrid
4
polyketide produced
4
produced endophytic
4
endophytic biocontrol
4
biocontrol phytopathogenic
4

Similar Publications

Efficacy of Ginkgo biloba extract in controlling patulin production by Penicillium expansum in sweet cherries.

Food Res Int

November 2025

SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China. Electronic address:

Fungal toxin contamination presents significant hazards to agroecosystems and food safety. Penicillium expansum (P. expansum) emerges as a primary threat, damaging sweet cherries through spoilage and generating the hazardous mycotoxin patulin (PAT).

View Article and Find Full Text PDF

The production process of , a filamentous fungus of dairy interest, involves transition from a solid to a liquid medium, allowing acquisition of a sufficient quantity of spores for transfer to a bioreactor. This step is hardly referenced whereas its impact on growth can be substantial. The aim of this study was to define the best condition for spore production on solid medium that maximizes the quality of produced spores for the transition to liquid medium.

View Article and Find Full Text PDF

Glycoside hydrolase Ma3360 mediates immune evasion by Metarhizium anisopliae in insects.

Pestic Biochem Physiol

November 2025

National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Entomopathogenic fungi can precisely inhibit the cellular and humoral immune responses of host insects by secreting effector proteins, allowing them to overcome the innate immune barriers of their hosts. Nodule formation is an immune response primarily mediated by insect hemocytes, which can rapidly and efficiently capture invading pathogenic fungi in the hemocoel. However, the molecular mechanisms by which fungi inhibit insect nodule formation through the secretion of effector proteins remain unclear.

View Article and Find Full Text PDF

Tomato Fusarium wilt, caused by the soil-borne pathogen Fusarium oxysporum f. sp. lycopersici (Fol), poses a significant threat to global tomato production, resulting in severe losses in both yield and quality.

View Article and Find Full Text PDF

An Asp f2-like protein negatively affects stress tolerance, conidiation and virulence in Metarhizium acridum.

Pestic Biochem Physiol

November 2025

School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China. Electronic add

Metarhizium acridum is a typical filamentous fungus that has been widely used to control grasshoppers, locusts, and crickets. Genetic engineering is a common strategy to enhance its virulence, conidiation, and stress tolerance. Here, we report that the M.

View Article and Find Full Text PDF