98%
921
2 minutes
20
Engineering cardiac patches are proven to be effective in myocardial infarction (MI) repair, but it is still a tricky problem in tissue engineering to construct a scaffold with good biocompatibility, suitable mechanical properties, and solid structure. Herein, decellularized fish skin matrix is utilized with good biocompatibility to prepare a flexible conductive cardiac patch through polymerization of polydopamine (PDA) and polypyrrole (PPy). Compared with single modification, the double modification strategy facilitated the efficiency of pyrrole polymerization, so that the patch conductivity is improved. According to the results of experiments in vivo and in vitro, the scaffold can promote the maturation and functionalization of cardiomyocytes (CMs). It can also reduce the inflammatory response, increase local microcirculation, and reconstruct the conductive microenvironment in infarcted myocardia, thus improving the cardiac function of MI rats. In addition, the excellent flexibility of the scaffold, which enables it to be implanted in vivo through "folding-delivering-re-stretehing" pathway, provides the possibility of microoperation under endoscope, which avoids the secondary damage to myocardium by traditional thoracotomy for implantation surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.202300207 | DOI Listing |
ChemSusChem
September 2025
Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
The development of mechanically robust, biocompatible, and biodegradable hydrogels remains a significant challenge for biomedical applications involving load-bearing soft tissues. Herein, a tubular lignin-derived hydrogel is engineered to assess its physicochemical, mechanical, and biological properties. Kraft and organosolv lignin are systematically compared at varying crosslinker concentrations to determine their effect on pore morphology, swelling behavior, and mechanical performance.
View Article and Find Full Text PDFNurs Open
September 2025
Department of Nursing, Central Taiwan University of Science and Technology, Taichung City, Taiwan.
Aim: To explore nursing students' satisfaction levels of each specific item and perceptions under the unprecedented abrupt online clinical practicum during the COVID-19 pandemic.
Design: A mixed-method design comprises a questionnaire and qualitative content analysis.
Methods: The study used purposive sampling using data from nursing students in grade 3 of a 4-year bachelor RN programme at a technological university in the north of Taiwan, compiled from May 2021 to June 2021 using an online questionnaire.
J Endod
September 2025
Endodontic Department,. Electronic address:
Introduction: This study evaluated the fatigue resistance of two Nickel-titanium (NiTi) engine-driven file systems with identical geometries and different heat treatments tested under static and dynamic conditions in simulated root canals.
Methods: Cyclic fatigue tests were conducted using ProTaper Universal (PTU) and ProTaper Gold (PTG) instruments with a curvature of 35° and a radius of 6 mm in both static and dynamic modes at body temperature using a customized cyclic fatigue testing device. The number of cycles to fracture (NCF) was recorded.
Genomics
September 2025
Laboratory of Single Cell Analyses, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego str. 12/14, 61-704 Poznań, Poland. Electronic address:
Despite advancements in genome annotation tools, challenges persist for non-classical model organisms with limited genomic resources, such as Schmidtea mediterranea. To address these challenges, we developed a flexible and scalable genome annotation pipeline that integrates short-read (Illumina) and long-read (PacBio) sequencing technologies. The pipeline combines reference-based and de novo assembly methods, effectively handling genomic variability and alternative splicing events.
View Article and Find Full Text PDFAdv Colloid Interface Sci
September 2025
Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, PR China. Electronic address:
Multiple stretchable gels with conductivity have been thoroughly prepared in diverse solvents historically to modulate their superlative properties in a multitude of applications, such as soft robotics, wearable devices, and e-skins. Eutectogels are considered as an emerging class of gels that combine the best features of both hydrogels and organogels, including environmental friendliness, thermal stability and customizable nature. Eutectogels, composed of deep eutectic solvents (DES) immobilized within different matrices, not only inherit the merits of DES, but also show some additional properties derived from the special structure and compositions, which are conducive to development potential.
View Article and Find Full Text PDF