Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Silicon (Si) is regarded as one of the most promising anode materials for high-performance lithium-ion batteries (LIBs). However, how to mitigate its poor intrinsic conductivity and the lithiation/delithiation-induced large volume change and thus structural degradation of Si electrodes without compromising their energy density is critical for the practical application of Si in LIBs. Herein, an integration strategy is proposed for preparing a compact micron-sized Si@G/CNF@NC composite with a tight binding and dual-encapsulated architecture that can endow it with superior electrical conductivity and deformation resistance, contributing to excellent cycling stability and good rate performance in thick electrode. At an ultrahigh mass loading of 10.8 mg cm , the Si@G/CNF@NC electrode also presents a large initial areal capacity of 16.7 mA h cm (volumetric capacity of 2197.7 mA h cm ). When paired with LiNi Co Mn O , the pouch-type full battery displays a highly competitive gravimetric (volumetric) energy density of ≈459.1 Wh kg (≈1235.4 Wh L ).

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202303864DOI Listing

Publication Analysis

Top Keywords

tight binding
8
volumetric capacity
8
energy density
8
binding dual
4
dual encapsulation
4
encapsulation enabled
4
enabled stable
4
stable thick
4
thick silicon/carbon
4
silicon/carbon anode
4

Similar Publications

Delivering therapeutics across the blood-brain barrier (BBB) remains a major challenge in ischemic stroke therapy. Ischemic stroke induces upregulation of various inflammatory membrane receptors on brain endothelial cells, offering potential entry points for receptor-mediated transcytosis. This study proposes a universal targeting strategy by employing inflammatory pathway antagonists as targeting ligands, which broadens the spectrum of available ligands beyond traditional receptor-binding molecules.

View Article and Find Full Text PDF

Carboxy-terminal tails (CTTs) of tubulin proteins are sites of regulating microtubule function. We previously conducted a genetic interaction screen and identified Kip3, a kinesin-8 motor, as potentially requiring the β-tubulin CTT (β-CTT) for function. Here we use budding yeast to define how β-CTT promotes Kip3 function and the features of β-CTT that are important for this mechanism.

View Article and Find Full Text PDF

Strain-induced instabilities of graphene under biaxial stress.

J Chem Phys

September 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.

The mechanical properties of graphene are investigated using classical molecular dynamics simulations as a function of temperature T and external stress τ. The elastic response is characterized by calculating elastic constants via three complementary methods: (i) numerical derivatives of stress-strain curves, (ii) analysis of cell fluctuation correlations, and (iii) phonon dispersion analysis. Simulations were performed with two interatomic models: an empirical potential and a tight-binding electronic Hamiltonian.

View Article and Find Full Text PDF

The toll signaling pathway confers resistance of Neoseiulus barkeri to Beauveria bassiana via cascade lysozyme expression.

Pestic Biochem Physiol

November 2025

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing 400715, China. Electronic address:

The innovative fungus-mite collaborative control strategy based on the high resistance of predatory mites to entomopathogenic fungi offers significant advantages. However, the resistance mechanisms of predatory mites to entomopathogenic fungi remain poorly characterized. Additionally, the pathogenic and lethal risks of broad-spectrum entomopathogenic fungi to predatory mites pose constraints on their application.

View Article and Find Full Text PDF

The nature of the dominant pairing mechanism in some two-dimensional transition metal dichalcogenides is still debated. Focusing on monolayer 1H-NbSe, we show that superconductivity can be induced by the Coulomb interaction when accounting for screening effects on the trigonal lattice with multiple orbitals. Using ab initio based tight-binding parametrizations for the relevant low-energy d-bands, we evaluate the screened interaction microscopically.

View Article and Find Full Text PDF