Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Temperature is the most commonly collected vital sign in all of clinical medicine; it plays a critical role in care decisions related to topics ranging from infection to inflammation, sleep, and fertility. Most assessments of body temperature occur at isolated anatomical locations (e.g. axilla, rectum, temporal artery, or oral cavity). Even this relatively primitive mode for monitoring can be challenging with vulnerable patient populations due to physical encumbrances and artifacts associated with the sizes, weights, shapes and mechanical properties of the sensors and, for continuous monitoring, their hard-wired interfaces to data collection units. Here, we introduce a simple, miniaturized, lightweight sensor as a wireless alternative, designed to address demanding applications such as those related to the care of neonates in high ambient humidity environments with radiant heating found in incubators in intensive care units. Such devices can be deployed onto specific anatomical locations of premature infants for homeostatic assessments. The estimated core body temperature aligns, to within 0.05 °C, with clinical grade, wired sensors, consistent with regulatory medical device requirements. Time-synchronized, multi-device operation across multiple body locations supports continuous, full-body measurements of spatio-temporal variations in temperature and additional modes of determining tissue health status in the context of sepsis detection and various environmental exposures. In addition to thermal sensing, these same devices support measurements of a range of other essential vital signs derived from thermo-mechanical coupling to the skin, for applications ranging from neonatal and infant care to sleep medicine and even pulmonary medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115545DOI Listing

Publication Analysis

Top Keywords

simple miniaturized
8
body temperature
8
anatomical locations
8
miniaturized biosensors
4
biosensors wireless
4
wireless mapping
4
mapping thermoregulatory
4
thermoregulatory responses
4
temperature
4
responses temperature
4

Similar Publications

Note: An Integrated Miniature Time-of-Flight Mass Spectrometer System with 3D Printing Assisted Design of Versatile Pocket-Size Laser-Induced Acoustic Desorption Source.

J Am Soc Mass Spectrom

September 2025

Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China.

An integrated miniature time-of-flight mass spectrometer (TOF-MS) system coupled with a pocket-size 3D-printed laser-induced acoustic desorption (LIAD) source is described. This 3D-printed LIAD source utilizes only a miniature deceleration motor to achieve two-dimensional motion of the target surface, simplifying the source structure and improving the long-term stability of mass spectrometry measurements. It has been successfully applied to analyze the model molecule creatinine and ingredients in an energy beverage (Red Bull), where main natural nutrients were clearly identified.

View Article and Find Full Text PDF

In this study, we describe the synthesis and characterization of the mononuclear complexes [ )], [ ], and [ ], where = (2-((2-hydroxybenzylidene)-amino)-phenol). The structural analysis of these complexes was carried out utilizing mass spectrometry, H NMR, C NMR, P NMR, UV-visible, and FT-IR. All three complexes were investigated as corrosion inhibitors for mild steel in 1 M HCl.

View Article and Find Full Text PDF

Background: Wet chemical analysis has the advantages of uniform solutions and independence from standard materials, but it also faces problems such as complex pretreatment and high consumption of water and reagents. Especially for the analysis of a large number of samples, the pretreatment requires a lot of time and labor. The excessive use of reagents and water causes a waste of resources and leads to the generation of toxic gas and waste.

View Article and Find Full Text PDF

Diabetic foot ulcers (DFUs) is a severe complication of diabetes, progressing insidiously at early stages but eventually leading to amputation. Therefore, to effectively bring DFUs under control, early diagnosis is crucial. Recent researches have shown that DFUs progression correlates with tissue oxygenation.

View Article and Find Full Text PDF

Ligand-targeted nanomedicines provide precise delivery, enhance drug accumulation, and reduce side effects, but their clinical translation is hindered by challenges like protein corona formation, which can mask targeting ligands and impair functionality, and complex manufacturing processes. Here we develop galloylated liposomes (GA-lipo) by incorporating gallic acid-modified lipids into lipid bilayers, enabling the stable and controlled adsorption of targeting ligands through non-covalent physical interactions. This approach preserves ligand orientation and functionality, ensuring that binding sites remain exposed even in the presence of a protein corona.

View Article and Find Full Text PDF