A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

T4 bacteriophage nanoparticles engineered through CRISPR provide a versatile platform for rapid development of flu mucosal vaccines. | LitMetric

T4 bacteriophage nanoparticles engineered through CRISPR provide a versatile platform for rapid development of flu mucosal vaccines.

Antiviral Res

State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultur

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vaccines that trigger mucosal immune responses at the entry portals of pathogens are highly desired. Here, we showed that antigen-decorated nanoparticle generated through CRISPR engineering of T4 bacteriophage can serve as a universal platform for the rapid development of mucosal vaccines. Insertion of Flu viral M2e into phage T4 genome through fusion to Soc (Small Outer Capsid protein) generated a recombinant phage, and the Soc-M2e proteins self-assembled onto phage capsids to form 3M2e-T4 nanoparticles during propagation of T4 in E. coli. Intranasal administration of 3M2e-T4 nanoparticles maintains antigen persistence in the lungs, resulting in increased uptake and presentation by antigen-presenting cells. M2e-specific secretory IgA, effector (T), central (T), and tissue-resident memory CD4 T cells (T) were efficiently induced in the local mucosal sites, which mediated protections against divergent influenza viruses. Our studies demonstrated the mechanisms of immune protection following 3M2e-T4 nanoparticles vaccination and provide a versatile T4 platform that can be customized to rapidly develop mucosal vaccines against future emerging epidemics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2023.105688DOI Listing

Publication Analysis

Top Keywords

mucosal vaccines
12
3m2e-t4 nanoparticles
12
provide versatile
8
versatile platform
8
platform rapid
8
rapid development
8
mucosal
5
bacteriophage nanoparticles
4
nanoparticles engineered
4
engineered crispr
4

Similar Publications