98%
921
2 minutes
20
The interaction between the nuclear and chloroplast genomes in plants is crucial for preserving essential cellular functions in the face of varying rates of mutation, levels of selection, and modes of transmission. Despite this, identifying nuclear genes that coevolve with chloroplast genomes at a genome-wide level has remained a challenge. In this study, we conducted an evolutionary rate covariation analysis to identify candidate nuclear genes coevolving with chloroplast genomes in Juglandaceae. Our analysis was based on 4,894 orthologous nuclear genes and 76 genes across seven chloroplast partitions in nine Juglandaceae species. Our results indicated that 1,369 (27.97%) of the nuclear genes demonstrated signatures of coevolution, with the Ycf1/2 partition yielding the largest number of hits (765) and the ClpP1 partition yielding the fewest (13). These hits were found to be significantly enriched in biological processes related to leaf development, photoperiodism, and response to abiotic stress. Among the seven partitions, AccD, ClpP1, MatK, and RNA polymerase partitions and their respective hits exhibited a narrow range, characterized by dN/dS values below 1. In contrast, the Ribosomal, Photosynthesis, Ycf1/2 partitions and their corresponding hits, displayed a broader range of dN/dS values, with certain values exceeding 1. Our findings highlight the differences in the number of candidate nuclear genes coevolving with the seven chloroplast partitions in Juglandaceae species and the correlation between the evolution rates of these genes and their corresponding chloroplast partitions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410296 | PMC |
http://dx.doi.org/10.1093/gbe/evad145 | DOI Listing |
Anim Sci J
January 2025
Department of Animal Science, Bangladesh Agricultural University, Mymensingh, Bangladesh.
This study investigates the effects of L-carnitine on nuclear maturation and fertilization in cattle and goat oocytes. Ovaries were collected from females with poor reproductive efficiency in the tropical climate, and cumulus-oocyte complexes (COCs) were retrieved from large antral follicles. COCs were cultured with varying concentrations of L-carnitine (0, 0.
View Article and Find Full Text PDFVirchows Arch
September 2025
Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Av. Antônio Carlos, Pampulha, Belo Horizonte, 31270-901, Brazil.
Plasmablastic lymphoma (PBL) is a rare and aggressive non-Hodgkin lymphoma with a poor prognosis and short survival rates. It is classified as a large B-cell lymphoma subtype, but carries a plasmacytic immunophenotype. Therefore, PBL has pathogenetic overlaps with diffuse large B-cell lymphoma not otherwise specified (DLBCL NOS) and plasma cell neoplasms (PCNs).
View Article and Find Full Text PDFGenes Dev
September 2025
Department of Biological Sciences, Columbia University, New York, New York 10027, USA;
Enhancer RNAs (eRNAs) are transcribed by during enhancer activation but are typically rapidly degraded in the nucleus. During states of reduced RNA surveillance, however, eRNAs and other similar "noncoding" RNAs (including, e.g.
View Article and Find Full Text PDFBiochimie
September 2025
Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China. Electronic address:
The nuclear factor of activated T cells 3 (NFATc3) plays a significant role in various cancer-related processes, but its interactions with transcriptional modulators, particularly Promyelocytic Leukemia protein (PML), remain poorly understood. PML, a nuclear scaffold protein, is involved in tumor suppression and transcriptional regulation. This study investigates the interaction between NFATc3 and PML, focusing on the role of SUMOylation and its impact on downstream target genes.
View Article and Find Full Text PDFChem Biol Interact
September 2025
Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China. Electronic address:
There is increasing evidence that nuclear receptor subfamily 1 group I member 3 (NR1I3) plays a significant role in the progression of many malignancies. However, it is unclear whether NR1I3 suppresses colorectal cancer (CRC) growth or alters gluconeogenesis. Western blotting, flow cytometry analysis, cell proliferation, colony formation assays, quantitative real-time polymerase chain reaction (qRT‒PCR), gluconeogenesis tests, and animal models were used to examine the functional role of NR1I3 in CRC cells.
View Article and Find Full Text PDF