98%
921
2 minutes
20
This study aims to develop a 30 kHz/12 kW silicon carbide (SiC)/Si integrated hybrid power module (iHPM) for variable frequency drive applications, particularly industrial servo motor control, and, additionally, to theoretically and experimentally assess its dynamic characteristics and efficiency during operation. This iHPM integrates a brake circuit, a three-phase Si rectifier, and a three-phase SiC inverter within a single package to achieve a minimal current path. A space-vector pulse width modulation (SVPWM) scheme is used to control the inverter power switches. In order to reduce parasitic inductance and power loss, an inductance cancellation design is implemented in the Si rectifier and SiC inverter. The switching transients and their parasitic effects during a three-phase operation are assessed through an electromagnetic-circuit co-simulation model, by which the power loss and efficiency of the iHPM are estimated. The modeled parasitic inductance of the inverter is validated through inductance measurement, and the effectiveness of the simulated results in terms of switching transients and efficiency is verified using the experimental results of the double pulse test and open-loop inverter operation, respectively. In addition, the power loss and efficiency of the SiC MOSFET inverter are experimentally compared against those of a commercial Si IGBT inverter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385783 | PMC |
http://dx.doi.org/10.3390/mi14071356 | DOI Listing |
Research (Wash D C)
September 2025
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
With the rapid advancement of communication technologies, issues of electromagnetic pollution and electromagnetic compatibility have become increasingly severe, heightening the demand for high-performance electromagnetic wave absorption materials. Metal-organic frameworks (MOFs) have flourished in this field owing to their chemical tunability, high porosity, tailored topological structures, and functionality. MOF-derived composites exhibit diverse loss mechanisms and heterogeneous structures, achieving lightweight, broadband, and highly efficient absorption.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Mathematics and Computer Science, Yan'an University, Yan'an, Shaanxi, China.
To address the challenge of real-time kiwifruit detection in trellised orchards, this paper proposes YOLOv10-Kiwi, a lightweight detection model optimized for resource-constrained devices. First, a more compact network is developed by adjusting the scaling factors of the YOLOv10n architecture. Second, to further reduce model complexity, a novel C2fDualHet module is proposed by integrating two consecutive Heterogeneous Kernel Convolution (HetConv) layers as a replacement for the traditional Bottleneck structure.
View Article and Find Full Text PDFAnalyst
September 2025
Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
Rapid and efficient screening of foodborne pathogens is crucial for preventing bacterial spread and food poisoning. However, developing a multi-detection method that is easy to operate, offers good stability, and achieves high efficiency remains an enormous challenge. Existing multiplexed nucleic acid detection methods suffer from complex designs, leading to complicated operations, and non-robust sample introduction, causing primer/probe crosstalk and false-positive results.
View Article and Find Full Text PDFInt J Sports Physiol Perform
September 2025
Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan.
Purpose: This study explored the acute physiological effects of different eccentric tempos, explosive speed (EXP), volitional speed, and 4-second tempo during 5 sets of velocity-based squat training.
Methods: Twelve healthy males performed parallel squats under 3 eccentric conditions using a randomized crossover design. Each session included 5 sets at a relative load, initiated with a concentric mean velocity of 0.
Bioresour Technol
September 2025
State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
The pyrolysis of flue-cured tobacco stalks (TS) faces challenges such as low bio-oil value and utilization efficiency. Existing studies have overlooked the anatomical heterogeneity of tobacco stalks, thereby limiting the directional regulation of high-value components, such as nicotine and phenolic compounds. This study divides TS into the husk (TSH), xylem (TSX), and pith (TSP), and investigates their physicochemical properties, pyrolysis behavior (through TGA and fixed-bed pyrolysis experiments), and interactions.
View Article and Find Full Text PDF