98%
921
2 minutes
20
Several molecular mechanisms of thalidomide embryopathy (TE) have been investigated, from anti-angiogenesis to oxidative stress to cereblon binding. Recently, it was discovered that thalidomide and its analogs, named immunomodulatory drugs (IMiDs), induced the degradation of C2H2 transcription factors (TFs). This mechanism might impact the strict transcriptional regulation of the developing embryo. Hence, this study aims to evaluate the TFs altered by IMiDs, prioritizing the ones associated with embryogenesis through transcriptome and systems biology-allied analyses. This study comprises only the experimental data accessed through bioinformatics databases. First, proteins and genes reported in the literature as altered/affected by the IMiDs were annotated. A protein systems biology network was evaluated. TFs beta-catenin (CTNNB1) and SP1 play more central roles: beta-catenin is an essential protein in the network, while SP1 is a putative C2H2 candidate for IMiD-induced degradation. Separately, the differential expressions of the annotated genes were analyzed through 23 publicly available transcriptomes, presenting 8624 differentially expressed genes (2947 in two or more datasets). Seventeen C2H2 TFs were identified as related to embryonic development but not studied for IMiD exposure; these TFs are potential IMiDs degradation neosubstrates. This is the first study to suggest an integration of IMiD molecular mechanisms through C2H2 TF degradation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380514 | PMC |
http://dx.doi.org/10.3390/ijms241411515 | DOI Listing |
J Eval Clin Pract
September 2025
Department of Orthopedics and Traumatology, Medical Faculty, University of Health Sciences, Antalya, Turkey.
Aims And Objective: The field of medical statistics has experienced significant advancements driven by integrating innovative statistical methodologies. This study aims to conduct a comprehensive analysis to explore current trends, influential research areas, and future directions in medical statistics.
Methods: This paper maps the evolution of statistical methods used in medical research based on 4,919 relevant publications retrieved from the Web of Science.
Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.
View Article and Find Full Text PDFBMB Rep
September 2025
School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186; Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju 61186; Institute of Systems Biology and Life Science Informatics, Chonnam National University, Gwangju 61186, Korea
The reverse β-oxidation (rBOX) pathway is emerging as a promising alternative to fossil fuel-based chemical production, providing a versatile platform for the synthesis of various valueadded biochemicals. Efficient application of rBOX depends on the selection of enzymes with high catalytic activity, suitable substrate specificity, and strong functional compatibility within the pathway. In this review, we focus on the structural and biochemical characteristics of four key enzymes-thiolase, 3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and enoyl-CoA reductase-and explore how their individual features and combinations influence pathway performance.
View Article and Find Full Text PDFBMB Rep
September 2025
Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
DNA, a large molecule located in the nucleus, carries essential genetic information, including gene loci and cis-regulatory elements. Despite its extensive length, DNA is compactly stored within the limited space of the nucleus due to its hierarchical three-dimensional (3D) organization. In this structure, DNA is organized into territories known as topologically associated domains (TADs).
View Article and Find Full Text PDFEcology
September 2025
Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
Recent evidence suggests that parasite-mediated reductions in food intake (i.e., anorexia) in herbivores can trigger trophic cascades that increase producer biomass.
View Article and Find Full Text PDF