98%
921
2 minutes
20
Squamates include more than 11,000 extant species of lizards, snakes, and amphisbaenians, and display a dazzling diversity of phenotypes across their over 200-million-year evolutionary history on Earth. Here, we introduce and define squamates (Order Squamata) and review the history and promise of genomic investigations into the patterns and processes governing squamate evolution, given recent technological advances in DNA sequencing, genome assembly, and evolutionary analysis. We survey the most recently available whole genome assemblies for squamates, including the taxonomic distribution of available squamate genomes, and assess their quality metrics and usefulness for research. We then focus on disagreements in squamate phylogenetic inference, how methods of high-throughput phylogenomics affect these inferences, and demonstrate the promise of whole genomes to settle or sustain persistent phylogenetic arguments for squamates. We review the role transposable elements play in vertebrate evolution, methods of transposable element annotation and analysis, and further demonstrate that through the understanding of the diversity, abundance, and activity of transposable elements in squamate genomes, squamates can be an ideal model for the evolution of genome size and structure in vertebrates. We discuss how squamate genomes can contribute to other areas of biological research such as venom systems, studies of phenotypic evolution, and sex determination. Because they represent more than 30% of the living species of amniote, squamates deserve a genome consortium on par with recent efforts for other amniotes (i.e., mammals and birds) that aim to sequence most of the extant families in a clade.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379679 | PMC |
http://dx.doi.org/10.3390/genes14071387 | DOI Listing |
Endocrinology
July 2025
Department of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland.
Vertebrate reproduction is controlled by 2 pituitary gonadotropin hormones (GtHs), FSH and LH, binding to gonadotropin hormone receptors (GtHRs) in gonadal tissues. All gnathostome vertebrates have been confirmed to possess at least 1 receptor for each GtH [LH receptor (LHR) and FSH receptor (FSHR)], except for species of the reptilian (nonavian sauropsidan) orders, such as lepidosauria, testudines, and crocodylia, which showed inexplicable reactions to heterologous amphibian, avian, and mammalian GtHs in early endocrinological studies. This study investigated the number and function of reptilian GtHRs.
View Article and Find Full Text PDFbioRxiv
June 2025
Department of Human Genetics, University of Utah; Salt Lake City, Utah, 84112 USA.
Many scaled reptiles (squamates) are exposed to flaviviruses but some, including iguanas, exhibit strong resistance to infection. To identify genes encoding viral resistance, we screened a cDNA library generated from green iguana and discovered a reptilian TRIM-family E3 ubiquitin ligase that reduces dengue virus replication ~10,000-fold. Experimental evolution identified flavivirus capsid as the substrate of this ligase, revealing an apparent evolutionary vulnerability for flaviviruses, which depend on capsid ubiquitylation to infect cells.
View Article and Find Full Text PDFGigascience
January 2025
Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain.
Venoms have traditionally been studied from a proteomic and/or transcriptomic perspective, often overlooking the true genetic complexity underlying venom production. The recent surge in genome-based venom research (sometimes called "venomics") has proven to be instrumental in deepening our understanding of venom evolution at the molecular level, particularly through the identification and mapping of toxin-coding loci across the broader chromosomal architecture. Although venomous snakes are a model system in venom research, the number of high-quality reference genomes in the group remains limited.
View Article and Find Full Text PDFMol Ecol
June 2025
Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India.
Marked with high levels of endemism and in situ radiations, the Western Ghats mountains make for a compelling backdrop to examine processes that lead to the formation and maintenance of species. Regional geographic barriers and paleoclimatic fluctuations have been implicated as drivers of speciation, but their roles have not been explicitly tested in a phylogenomic framework. We integrated mitochondrial DNA, genome-wide SNPs and climatic data to examine the influence of geographic barriers and climatic transitions in shaping phylogeography and potential speciation in the Peninsular Indian Flying lizard (Draco dussumieri).
View Article and Find Full Text PDFIntegr Zool
April 2025
State Key Laboratory of Genetic Evolution & Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
Reproduction in vertebrates usually involves egg-laying (oviparity) or live-bearing (viviparity). Oviparity is the ancestral trait from which viviparity has independently evolved more than 100 times in squamate reptiles. This transition involves a series of physiological and structural changes, including the degeneration of eggshell and the evolution of a placenta and differences in the temporal and spatial expression patterns of some functional genes that drive the structural transformation.
View Article and Find Full Text PDF