Publications by authors named "Simone M Gable"

In most animal species, the sex determining pathway is typically initiated by the presence/absence of a primary genetic cue at a critical point during development. This primary genetic cue is often located on a single locus-referred to as sex chromosomes-and can be limited to females (in a ZZ/ZW system) or males (in an XX/XY system). One trademark of sex chromosomes is a restriction or cessation of recombination surrounding the sex-limited region (to prevent its inheritance in the homogametic sex).

View Article and Find Full Text PDF

Transposable elements (TEs) are repetitive DNA sequences which create mutations and generate genetic diversity across the tree of life. In amniote vertebrates, TEs have been mainly studied in mammals and birds, whose genomes generally display low TE diversity. Squamates (Order Squamata; including ∼11,000 extant species of lizards and snakes) show as much variation in TE abundance and activity as they do in species and phenotypes.

View Article and Find Full Text PDF

Transposable elements (TEs) are repetitive DNA sequences which create mutations and generate genetic diversity across the tree of life. In amniotic vertebrates, TEs have been mainly studied in mammals and birds, whose genomes generally display low TE diversity. Squamates (Order Squamata; ~11,000 extant species of lizards and snakes) show as much variation in TE abundance and activity as they do in species and phenotypes.

View Article and Find Full Text PDF

There is increasing interest in the African spiny mouse (Acomys cahirinus) as a model organism because of its ability for regeneration of tissue after injury in skin, muscle, and internal organs such as the kidneys. A high-quality reference genome is needed to better understand these regenerative properties at the molecular level. Here, we present an improved reference genome for A.

View Article and Find Full Text PDF

Squamates include more than 11,000 extant species of lizards, snakes, and amphisbaenians, and display a dazzling diversity of phenotypes across their over 200-million-year evolutionary history on Earth. Here, we introduce and define squamates (Order Squamata) and review the history and promise of genomic investigations into the patterns and processes governing squamate evolution, given recent technological advances in DNA sequencing, genome assembly, and evolutionary analysis. We survey the most recently available whole genome assemblies for squamates, including the taxonomic distribution of available squamate genomes, and assess their quality metrics and usefulness for research.

View Article and Find Full Text PDF
Article Synopsis
  • There is growing interest in the African spiny mouse as a model for studying tissue regeneration in various body systems.
  • A new reference genome has been developed using long Nanopore sequencing, providing better insights into its regenerative abilities.
  • This improved genome shows higher quality and continuity compared to earlier versions, aiding research on the mouse's unique regenerative processes.
View Article and Find Full Text PDF

To examine phylogenetic heterogeneity in turtle evolution, we collected thousands of high-confidence single-copy orthologs from 19 genome assemblies representative of extant turtle diversity and estimated a phylogeny with multispecies coalescent and concatenated partitioned methods. We also collected next-generation sequences from 26 turtle species and assembled millions of biallelic markers to reconstruct phylogenies based on annotated regions from the western painted turtle (Chrysemys picta bellii) genome (coding regions, introns, untranslated regions, intergenic, and others). We then measured gene tree-species tree discordance, as well as gene and site heterogeneity at each node in the inferred trees, and tested for temporal patterns in phylogenomic conflict across turtle evolution.

View Article and Find Full Text PDF