Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Confined catalytic realms and synergistic catalysis sites were constructed using bimetallic active centers in two-dimensional metal-organic frameworks (MOFs) to achieve highly selective oxygenation of cycloalkanes and alkyl aromatics with oxygen towards partly oxygenated products. Every necessary characterization was carried out for all the two-dimensional MOFs. The selective oxygenation of cycloalkanes and alkyl aromatics with oxygen was accomplished with exceptional catalytic performance using two-dimensional MOF Co-TCPPNi as a catalyst. Employing Co-TCPPNi as a catalyst, both the conversion and selectivity were improved for all the hydrocarbons investigated. Less disordered autoxidation at mild conditions, inhibited free-radical diffusion by confined catalytic realms, and synergistic C-H bond oxygenation catalyzed by second metal center Ni employing oxygenation intermediate R-OOH as oxidant were the factors for the satisfying result of Co-TCPPNi as a catalyst. When homogeneous metalloporphyrin T(4-COOCH)PPCo was replaced by Co-TCPPNi, the conversion in cyclohexane oxygenation was enhanced from 4.4% to 5.6%, and the selectivity of partly oxygenated products increased from 85.4% to 92.9%. The synergistic catalytic mechanisms were studied using EPR research, and a catalysis model was obtained for the oxygenation of C-H bonds with O. This research offered a novel and essential reference for both the efficient and selective oxygenation of C-H bonds and other key chemical reactions involving free radicals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807029PMC
http://dx.doi.org/10.3390/biomimetics8030325DOI Listing

Publication Analysis

Top Keywords

selective oxygenation
16
oxygenation cycloalkanes
12
cycloalkanes alkyl
12
alkyl aromatics
12
aromatics oxygen
12
co-tcppni catalyst
12
efficient selective
8
oxygenation
8
synergistic catalysis
8
bimetallic active
8

Similar Publications

Horizontal Gene Transfer and Recombination in Cyanobacteriota.

Annu Rev Microbiol

September 2025

4Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France.

Cyanobacteria played a pivotal role in shaping Earth's early history and today are key players in many ecosystems. As versatile and ubiquitous phototrophs, they are used as models for oxygenic photosynthesis, nitrogen fixation, circadian rhythms, symbiosis, and adaptations to harsh environments. Cyanobacterial genomes and metagenomes exhibit high levels of genomic diversity partly driven by gene flow within and across species.

View Article and Find Full Text PDF

From Biological Mechanisms to Clinical Applications: A Review of Photobiomodulation in Dental Practice.

Photobiomodul Photomed Laser Surg

September 2025

Department of Oral and Maxillofacial Diagnostic Sciences, Dental College and Hospital, Taibah University, Medina, Saudi Arabia.

Photobiomodulation (PBM) therapy involves the use of low-dose, nonionizing light to reduce pain and inflammation, promote wound healing, and enhance tissue regeneration. PBM-based therapy of various dental conditions is associated with improved treatment outcomes. This study aims to critically review the literature to highlight the underlying molecular biological mechanisms and clinical applications of PBM in modern dental practice.

View Article and Find Full Text PDF

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF

ACP-105 (CAS: 1048998-11-3) is a novel non-steroidal selective androgen receptor modulator (SARM), increasingly detected in anti-doping analyses, yet lacking a comprehensive ADME profile. This study provides the first integrative in silico characterization of ACP-105's ADME properties using seven independent methods (ADMETlab 3.0, ADMET Predictor 12.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) play a crucial role in disease control by establishing symbiotic relationships with plant roots. AMF improve salinity tolerance in plants by regulating the Na/K ratio through selective ion transport and mediate osmotic regulation by inducing the accumulation of osmotic-compatible solutes such as glycine betaine and proline to enable plant cells to maintain water content and the metabolic balance. AMF can also activate antioxidant defense responses by stimulating enzymes that protect plant cells from harmful oxidation and pathological infections.

View Article and Find Full Text PDF