Systematic Proteomics Study on the Embryonic Development of .

J Proteome Res

School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The early development of zebrafish () is a complex and dynamic physiological process involving cell division, differentiation, and movement. Currently, the genome and transcriptome techniques have been widely used to study the embryonic development of zebrafish. However, the research of proteomics based on proteins that directly execute functions is relatively vacant. In this work, we apply label-free quantitative proteomics to explore protein profiling during zebrafish's embryogenesis, and a total of 5961 proteins were identified at 10 stages of zebrafish's early development. The identified proteins were divided into 11 modules according to weighted gene coexpression network analysis (WGCNA), and the characteristics between modules were significantly different. For example, mitochondria-related functions enriched the early development of zebrafish. Primordial germ cell-related proteins were identified at the 4-cell stage, while the eye development event is dominated at 5 days post fertilization (dpf). By combining with published transcriptomics data, we discovered some proteins that may be involved in activating zygotic genes. Meanwhile, 137 novel proteins were identified. This study comprehensively analyzed the dynamic processes in the embryonic development of zebrafish from the perspective of proteomics. It provided solid data support for further understanding of the molecular mechanism of its development.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.3c00056DOI Listing

Publication Analysis

Top Keywords

development zebrafish
16
embryonic development
12
early development
12
proteins identified
12
study embryonic
8
development
8
proteins
6
systematic proteomics
4
proteomics study
4
development early
4

Similar Publications

Background: Genetic modifiers are believed to play an important role in the onset and severity of polycystic kidney disease (PKD), but identifying these modifiers has been challenging due to the lack of effective methodologies.

Methods: We generated zebrafish mutants of IFT140, a skeletal ciliopathy gene and newly identified autosomal dominant PKD (ADPKD) gene, to examine skeletal development and kidney cyst formation in larval and juvenile mutants. Additionally, we utilized ift140 crispants, generated through efficient microhomology-mediated end joining (MMEJ)-based genome editing, to compare phenotypes with mutants and conduct a pilot genetic modifier screen.

View Article and Find Full Text PDF

Organ initiation is often driven by extracellular signaling molecules that activate precursor cells competent to receive and respond to a given signal, yet little is known about the dynamics of competency in space and time during development. Teeth are excellent organs to study cellular competency because they can be activated with the addition of a single signaling ligand, Ectodysplasin (Eda). To investigate the role of Eda in tooth specification, we generated transgenic sticklebacks and zebrafish with heat shock-inducible Eda overexpression.

View Article and Find Full Text PDF

Fisetin modulates fluoride induced osteochondral toxicity in zebrafish larvae.

Comp Biochem Physiol C Toxicol Pharmacol

September 2025

Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India. Electronic address:

Excessive fluoride (F) exposure, particularly during early development, poses a significant risk to skeletal integrity by disrupting bone homeostasis through oxidative stress and altered mineralization. While F induced oxidative stress is well documented, studies investigating the role of natural antioxidants in mitigating F induced osteochondral toxicity remains limited. Hence, the present study investigated the osteomodulatory effect of fisetin (Fis) against F toxicity in zebrafish larvae.

View Article and Find Full Text PDF

Tetrabromobisphenol A (TBBPA), a widely used flame retardant in textiles and electronics, poses toxicological risks through both environmental and indoor exposures. Biomonitoring studies have detected significant TBBPA levels in prenatal environments, including cord blood, raising concerns about developmental impacts. Using zebrafish as a model, this study addresses critical gaps in understanding how developmental TBBPA exposures perturb regulatory pathways that govern dorsoventral patterning.

View Article and Find Full Text PDF

Hnf4α integrates AIF and caspase 3/9 signaling to restrict single and coinfecting pathogens in teleosts.

PLoS Pathog

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.

Hepatocyte nuclear factor 4 alpha (Hnf4α), a conserved nuclear receptor central to vertebrate liver development and metabolic regulation, emerges here as a pivotal immune regulator in teleosts against complex infectious threats. While its metabolic roles are well-established, Hnf4α's function in bacterial infection, viral infection, and bacterial-viral coinfection-major challenges in global aquaculture-remained uncharacterized. This study reveals that teleost Hnf4α acts as a dual-functional immune checkpoint, essential for combating Aeromonas salmonicida, grass carp reovirus (GCRV), and their coinfection.

View Article and Find Full Text PDF