Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single-cell sequencing could help to solve the fundamental challenge of linking millions of cell-type-specific enhancers with their target genes. However, this task is confounded by patterns of gene co-expression in much the same way that genetic correlation due to linkage disequilibrium confounds fine-mapping in genome-wide association studies (GWAS). We developed a non-parametric permutation-based procedure to establish stringent statistical criteria to control the risk of false-positive associations in enhancer-gene association studies (EGAS). We applied our procedure to large-scale transcriptome and epigenome data from multiple tissues and species, including the mouse and human brain, to predict enhancer-gene associations genome wide. We tested the functional validity of our predictions by comparing them with chromatin conformation data and causal enhancer perturbation experiments. Our study shows how controlling for gene co-expression enables robust enhancer-gene linkage using single-cell sequencing data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363915PMC
http://dx.doi.org/10.1016/j.xgen.2023.100342DOI Listing

Publication Analysis

Top Keywords

robust enhancer-gene
8
single-cell sequencing
8
gene co-expression
8
association studies
8
enhancer-gene regulation
4
regulation identified
4
identified single-cell
4
single-cell transcriptomes
4
transcriptomes epigenomes
4
epigenomes single-cell
4

Similar Publications

The specificity of gene expression during development requires the insulation of regulatory domains to avoid inappropriate enhancer-gene interactions. In vertebrates, this insulator function is mostly attributed to clusters of CTCF sites located at topologically associating domain (TAD) boundaries. However, TAD boundaries allow some physical crosstalk across regulatory domains, which is at odds with the specific and precise expression of developmental genes.

View Article and Find Full Text PDF

Background: Children with severe asthma suffer from recurrent symptoms and impaired quality of life despite advanced treatment. Underlying causes of severe asthma are not completely understood, although genetic mechanisms are known to be important.

Objective: The aim of this study was to identify gene regulatory enhancers in leukocytes, to describe the role of these enhancers in regulating genes related to severe and mild asthma in children, and to identify known asthma-related SNPs situated in proximity to enhancers.

View Article and Find Full Text PDF

Dissection of a CTCF topological boundary uncovers principles of enhancer-oncogene regulation.

Mol Cell

April 2024

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02215, USA. Electronic address: bradley_bernstei

Enhancer-gene communication is dependent on topologically associating domains (TADs) and boundaries enforced by the CCCTC-binding factor (CTCF) insulator, but the underlying structures and mechanisms remain controversial. Here, we investigate a boundary that typically insulates fibroblast growth factor (FGF) oncogenes but is disrupted by DNA hypermethylation in gastrointestinal stromal tumors (GISTs). The boundary contains an array of CTCF sites that enforce adjacent TADs, one containing FGF genes and the other containing ANO1 and its putative enhancers, which are specifically active in GIST and its likely cell of origin.

View Article and Find Full Text PDF

Functional analysis of the Drosophila eve locus in response to non-canonical combinations of gap gene expression levels.

Dev Cell

December 2023

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA; Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 75015 Paris, France. E

Transcription factor combinations play a key role in shaping cellular identity. However, the precise relationship between specific combinations and downstream effects remains elusive. Here, we investigate this relationship within the context of the Drosophila eve locus, which is controlled by gap genes.

View Article and Find Full Text PDF

Single-cell sequencing could help to solve the fundamental challenge of linking millions of cell-type-specific enhancers with their target genes. However, this task is confounded by patterns of gene co-expression in much the same way that genetic correlation due to linkage disequilibrium confounds fine-mapping in genome-wide association studies (GWAS). We developed a non-parametric permutation-based procedure to establish stringent statistical criteria to control the risk of false-positive associations in enhancer-gene association studies (EGAS).

View Article and Find Full Text PDF