98%
921
2 minutes
20
Soil organic carbon (C) is the largest active C pool of Earth's surface and is thus vital in sustaining terrestrial productivity and climate stability. Arbuscular mycorrhizal fungi (AMF) form symbioses with most terrestrial plants and critically modulate soil C dynamics. Yet, it remains unclear whether and how AMF-root associations (i.e., mycorrhizae) interact with soil minerals to affect soil C cycling. Here we showed that the presence of both roots and AMF increased soil dissolved organic C and reactive Fe minerals, as well as litter decomposition and soil CO emissions. However, it reduced mineral-associated C. Also, high-resolution nanoscale secondary ion mass spectrometry images showed the existence of a thin coating (0.5-1.0 μm thick) of Fe O (Fe minerals) on the surface of C N (fungal biomass), illustrating the close physical association between fungal hyphae and soil Fe minerals. In addition, AMF genera were divergently related to reactive Fe minerals, with Glomus being positively but Paraglomus and Acaulospora negatively correlated with reactive Fe minerals. Moreover, the presence of roots and AMF, particularly when combined with litter addition, enhanced the abundances of several critical soil bacterial genera that are associated with the formation of reactive minerals in soils. A conceptual framework was further proposed to illustrate how AMF-root associations impact soil C cycling in the rhizosphere. Briefly, root exudates and the inoculated AMF not only stimulated the decomposition of litter and SOC and promoted the production of CO emission, but also drove soil C persistence by unlocking mineral elements and promoting the formation of reactive minerals. Together, these findings provide new insights into the mechanisms that underlie the formation of reactive minerals and have significant implications for understanding and managing soil C persistence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.16886 | DOI Listing |
Pestic Biochem Physiol
November 2025
State Key Laboratory of Agricultural and Forestry Biosecurity & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:
Rice bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) significantly reduces rice yield and quality. Traditional chemical control methods often have limited efficacy and raise environmental concerns, highlighting the need for safer and more effective alternatives.
View Article and Find Full Text PDFPlant Sci
September 2025
Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello15/a, 10135 Turin, Italy.
Cerium (Ce), the most abundant of the rare Earth elements (REEs), is increasingly recognized as an environmental contaminant due to its growing applications in various industrial and agricultural sectors. This study investigates the physiological, biochemical, and molecular responses of Brassica rapa L. plants to varying concentrations of Ce exposure to elucidate its effects on plant growth, metabolism, and stress responses.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Physical & Computational Science Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA.
Although heterogeneous photo-Fenton reactions on nanoparticulate iron oxides effectively degrade organic pollutants, the underlying surface mechanisms remain debated. Here, we demonstrate how these pathways are modulated by specific hematite crystal facets. To investigate the influence of particle surface structure, methylene blue (MB) adsorption and photodegradation kinetics are examined using facet-engineered hematite nanoparticles with distinct exposed facets.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Université de Lorraine, CNRS, GeoRessources, Nancy F-54000, France.
Quartz is among the most abundant minerals on Earth, but its surface chemistry under varying pH conditions remains not fully understood. In particular, the interplay between pH, amphoteric behavior, and water adsorption properties has been the subject of a long-standing debate. This study presents a comprehensive, multitechnique investigation into the pH-dependent interfacial chemistry of quartz.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:
Platinum and nitrogen co-doped titanium dioxide (Pt/N-TiO, with 1 wt% Pt and an N/Ti molar ratio of 1) has been synthesized. This Pt/N co-doping strategy creates Schottky junctions, reduces the bandgap energy (3.25 to 2.
View Article and Find Full Text PDF