Cancer cell-derived extracellular vesicles drive pre-metastatic niche formation of lymph node via IFNGR1/JAK1/STAT1-activated-PD-L1 expression on FRCs in head and neck cancer.

Oral Oncol

Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatol

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The aim of this study is to evaluate the role of FRCs regulated by cancer cell-derived extracellular vesicles (CEVs) played in pre-metastatic niche (PMN) formation of lymph node (LN).

Materials And Methods: The FRCs in sixty fresh cervical LNs from 20 patients were evaluated by flow cytometric analysis. Cells in LN with or without metastasis were analyzed by single-cell RNA sequencing (scRNA-seq). CEVs were isolated from the culture supernatant of primarily cultured cancer cells and cocultured with FRCs. Mass Spectrometry was used to identify LN metastasis related protein in CEVs. The activation of IFNGR1/JAK1/STAT1-activated-PD-L1 pathway in FRCs was detected by western blotting. FRCs were co-cultured with CD8+ T lymphocytes to confirm the cytotoxicity assay of FRCs.

Results: The proportion of fibroblastic reticular cells (FRCs) was significantly higher in micro-metastatic LN in head and neck squamous cell carcinoma patients (HNSCC, p < 0.05) and scRNA-seq analysis further showed a high focus of extracellular vesicles-related pathway on FRCs in LN with metastasis (p < 0.05). Interferon gamma receptor 1 (IFNGR1) in CEVs can be engulfed by FRCs and promote PD-L1 expression on FRCs via JAK1-STAT1 pathway, resulting in an increased CD8 T cell exhaustion.

Conclusion: IFNGR1, originated from cancer cell-derived extracellular vesicles, promote PD-L1 expression on FRCs and subsequent CD8+ T cell exhaustion via JAK1-STAT1 activation, which facilitate pre-metastatic niche formation and tumor metastasis in sentinel lymph node in HNSCC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.oraloncology.2023.106524DOI Listing

Publication Analysis

Top Keywords

cancer cell-derived
8
cell-derived extracellular
8
extracellular vesicles
8
pre-metastatic niche
8
formation lymph
8
lymph node
8
head neck
8
frcs
7
cancer
4
vesicles drive
4

Similar Publications

Integrins from extracellular vesicles as players in tumor microenvironment and metastasis.

Cancer Metastasis Rev

September 2025

Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.

Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.

View Article and Find Full Text PDF

Forkhead-box-protein P3 (FOXP3) is a key transcription factor in T regulatory cells (Tregs). However, its expression and significance in non-immune stromal cells in the tumor microenvironment remain unclear. Here, we demonstrated FOXP3 expression in stromal fibroblasts of mouse and human gastrointestinal tumors.

View Article and Find Full Text PDF

Technological advances and the desire to reduce dependence on animal models have brought human-relevant models to the forefront of drug development. This paradigm shift is leveraging the advances in systems and new approach methodologies (NAMs), which was the focus of a workshop convened by the Health and Environmental Sciences Institute (HESI) in May 2024. Highlights included discussions on predicting cardiac failure modes and the utility of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), microfluidic systems like BioFlux™, and engineered heart tissues in enhancing early-stage drug safety assessments.

View Article and Find Full Text PDF

Molecular impact of NOTCH signaling dysregulation on ovarian cancer progression, chemoresistance, and taxane response.

Biomed Pharmacother

September 2025

Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Laboratory of Pharmacogenomics, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic. Electronic address:

Patients with epithelial ovarian cancer (EOC) face high mortality due to late diagnosis, recurrence, metastasis, and drug resistance. The NOTCH signaling pathway plays a critical role in cancer progression. This study analyzed NOTCH pathway deregulation in EOC patients and its response to taxane treatment in vitro and in vivo.

View Article and Find Full Text PDF

Crohn's disease pathology is modeled in TNF mice that overproduce tumor necrosis factor (TNF) to drive disease through TNF receptors. An alternative ligand for TNF receptors, soluble LTα, is produced by B cells, but has received scarce attention because LTα also partners with LTβ to generate membrane-tethered LTαβ that promotes tertiary lymphoid tissue-another feature of Crohn's disease. We hypothesized that B cell-derived LTαβ would critically affect ileitis in TNF mice.

View Article and Find Full Text PDF