Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reactive force fields (RFFs) are an expedient approach to sample chemical reaction paths in complex systems, relative to density functional theory. However, there is continued need to improve efficiencies, specifically in systems that have slow transverse degrees of freedom, as in highly viscous and superconcentrated solutions. Here, we present an RFF that is differentiated from current models (e.g., ReaxFF) by omitting explicit dependence on the atom coordination and employing a small parameter set based on Lennard-Jones, Gaussian, and Stillinger-Weber potentials. The model was parametrized from AIMD simulation data and is used to model aluminate reactivity in sodium hydroxide solutions with extensive validation against experimental radial distribution functions, computed free energy profiles for oligomerization, and formation energies. The model enables simulation of early stage Al(OH) nucleation which has significant relevance to industrial processing of aluminum has a computational cost that is relative to ReaxFF.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.3c01176DOI Listing

Publication Analysis

Top Keywords

reactive force
8
efficient reactive
4
force field
4
field explicit
4
explicit coordination
4
coordination dependence
4
dependence studying
4
studying caustic
4
caustic aluminum
4
aluminum chemistry
4

Similar Publications

This study quantitatively evaluated the adsorption performance of natural bentonite for removing three dye classes-cationic (Basic dye: BEZACRYL RED GRL), anionic (Reactive dye: AVITERA LIGHT RED SE), and non-ionic (Disperse dye: BEMACRON BLUE HP3R) from synthetic textile wastewater. Batch adsorption experiments were conducted under varying conditions of contact time (15-90 min), adsorbent dosage (20-60 g L⁻), pH (4 and 12), and temperature (25-100 °C), with dye concentrations quantified by UV-Vis spectroscopy. At a contact time of 30 min and room temperature (25 °C), maximum removal efficiencies reached 99.

View Article and Find Full Text PDF

Quantum mechanical tunnelling significantly influences the reactivity of strained ring systems, yet strategies for controlling such reactivity remain largely unexplored. Here, we identify geminal hyperconjugation, , electron delocalization between σ-bonds attached to a common atom, as a decisive electronic factor in governing heavy-atom tunnelling reactions involving three-membered rings. We illustrate this through a case study of the oxepin (1') ⇌ benzene oxide (1) equilibrium, recently shown to undergo solvent-controlled tunnelling at 3 K (, 2020, , 20318).

View Article and Find Full Text PDF

Objective: The study aimed to evaluate the effectiveness of hard court slide braking technique of elite college tennis players and to analyze the factors that influence the use of hard court slide braking technique.

Methods: A total of 100 elite tennis players (58 males and 42 females) participated in tests involving hard court hit-to-return and Forcedecks Dual Force Plates System-based physical function. Independent samples t-tests, paired samples t-tests and binary logistic regression were employed in data analysis.

View Article and Find Full Text PDF

Bacterial cellulose (BC) was produced in dried apricot extract medium (DAEM) by . The BC yield obtained from DAEM containing 0.5 g of glucose after 10 days of incubation at 30 °C was determined as 9.

View Article and Find Full Text PDF

A detailed understanding of the composition and polymerization mechanism of elemental sulfur remains a decades long unresolved question for modern chemistry. However, the dynamic nature of molten sulfur significantly complicates its accurate characterization. To overcome this challenge, we performed the first comprehensive molecular dynamics (MD) simulations using a ReaxFF reactive force field specifically parameterized to capture the complex ring-opening polymerization dynamics of elemental sulfur.

View Article and Find Full Text PDF