98%
921
2 minutes
20
The oxygen evolution reaction (OER) plays a vital role in renewable energy technologies, including in fuel cells, metal-air batteries, and water splitting; however, the currently available catalysts still suffer from unsatisfactory performance due to the sluggish OER kinetics. Herein, we developed a new catalyst with high efficiency in which the dynamic exchange mechanism of active Fe sites in the OER was regulated by crystal plane engineering and pore structure design. High-density nanoholes were created on cobalt hydroxide as the catalyst host, and then Fe species were filled inside the nanoholes. During the OER, the dynamic Fe was selectively and strongly adsorbed by the (101̅0) sites on the nanohole walls rather than the (0001) basal plane, and at the same time the space-confining effect of the nanohole slowed down the Fe diffusion from catalyst to electrolyte. As a result, a local high-flux Fe dynamic equilibrium inside the nanoholes for OER was achieved, as demonstrated by the Fe isotope labeled mass spectrometry, thereby delivering a high OER activity. The catalyst showed a remarkably low overpotential of 228 mV at a current density of 10 mA cm, which is among the best cobalt-based catalysts reported so far. This special protection strategy for Fe also greatly improved the catalytic stability, reducing the Fe leaching amount by 2 orders of magnitude compared with the pure Fe hydroxide catalyst and thus delivering a long-term stability of 130 h. An assembled Zn-air battery was stably cycled for 170 h with a low discharge/charge voltage difference of 0.72 V.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c03481 | DOI Listing |
Nat Rev Mol Cell Biol
September 2025
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
The defining property of eukaryotic cells is the storage of heritable genetic material in a nuclear compartment. For eukaryotic cells to carry out the myriad biochemical processes necessary for their function, macromolecules must be efficiently exchanged between the nucleus and cytoplasm. The nuclear pore complex (NPC) - which is a massive assembly of ~35 different proteins present in multiple copies totalling ~1,000 protein subunits and architecturally conserved across eukaryotes - establishes a size-selective channel for regulated bidirectional transport of folded macromolecules and macromolecular assemblies across the nuclear envelope.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.. Electronic address:
This study presents a straightforward and rapid method for preparing graphene aerogel by integrating a sodium alginate (SA)-metal ion crosslinking system, a bubble template, and an osmotic dehydration process. Graphene oxide (GO) nanosheets were dispersed into the solution crosslinked by SA and metal ions, leading to rapid gelation of GO under ambient conditions. To minimize structural damage to the porous network caused by water molecules during the drying process, an osmotic dehydration technique was employed as an auxiliary drying method.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),
Hypothesis: Gas hydrate formation in sediments is influenced by the availability of gas-water interfacial areas, which governs gas-water interactions. The surface wettability of sediment particles is expected to affect the spatial distribution of water within the pore space, thereby altering the extent of gas-liquid contact. Consequently, by tuning the wettability heterogeneity of the sediment, the spatial distribution of pore water can be regulated, which in turn influences the gas-water interactions and the kinetics of gas hydrate formation.
View Article and Find Full Text PDFRev Sci Instrum
September 2025
Department of Earth Sciences, University College London, London, United Kingdom.
We have developed a new true triaxial apparatus for rock deformation, featuring six servo-controlled loading rams capable of applying maximum stresses of 220 MPa along the two horizontal axes and 400 MPa along the vertical axis to cubic rock samples of 50 mm side. Samples are introduced into a steel vessel, allowing rock specimens to be subjected to confining pressures of up to 60 MPa. Pore fluid lines connected to two pump intensifiers enable high-precision permeability measurements along all three principal stress directions.
View Article and Find Full Text PDFLangmuir
September 2025
Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China.
Surfactant-enhanced spontaneous imbibition is a proven method of enhancing oil recovery from shale reservoirs. However, a significant knowledge gap concerning the impact of clay minerals on surfactant-enhanced imbibition in shale reservoirs remains. Therefore, this study first analyzed the mineral composition and pore structure of the shale reservoirs.
View Article and Find Full Text PDF