98%
921
2 minutes
20
Almost all of Earth's oceans are now impacted by multiple anthropogenic stressors, including the spread of nonindigenous species, harmful algal blooms, and pathogens. Early detection is critical to manage these stressors effectively and to protect marine systems and the ecosystem services they provide. Molecular tools have emerged as a promising solution for marine biomonitoring. One of the latest advancements involves utilizing CRISPR-Cas technology to build programmable, rapid, ultrasensitive, and specific diagnostics. CRISPR-based diagnostics (CRISPR-Dx) has the potential to allow robust, reliable, and cost-effective biomonitoring in near real time. However, several challenges must be overcome before CRISPR-Dx can be established as a mainstream tool for marine biomonitoring. A critical unmet challenge is the need to design, optimize, and experimentally validate CRISPR-Dx assays. Artificial intelligence has recently been presented as a potential approach to tackle this challenge. This perspective synthesizes recent advances in CRISPR-Dx and machine learning modeling approaches, showcasing CRISPR-Dx potential to progress as a rising molecular tool candidate for marine biomonitoring applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494903 | PMC |
http://dx.doi.org/10.1089/crispr.2023.0019 | DOI Listing |
ACS Sens
September 2025
Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, China.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder primarily characterized by cognitive decline and behavioral impairments, typically manifesting in the elderly and presenile population. With the rapid global aging trend, early diagnosis and treatment of AD have become increasingly urgent research priorities. The primary pathological features of AD include excessive accumulation of β-amyloid (Aβ) plaques, the formation of neurofibrillary tangles, and neuronal loss.
View Article and Find Full Text PDFBioscience
September 2025
School of the Environment, Centre for Biodiversity and Conservation Science of the University of Queensland, Commonwealth Scientific and Industrial Research Organization, Environment, Brisbane, Queensland, Austalia.
Plankton, a diverse group of aquatic organisms, make Earth livable, regulate aquatic life, and provide benefits to human societies such as access to clean water, food security, and well-being. They also support economies and inspire biotechnological innovations. This article aims to raise awareness of the value of plankton to humanity and serves as an informative guide for aquatic professionals, policymakers, and anyone interested in plankton.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Department of Ocean Engineering, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea. Electronic address:
Coastal sediments in semi-enclosed bays are particularly susceptible to contamination due to limited water circulation and ongoing contaminant input. In Masan Bay, a heavily impacted coastal area in Korea, sediment remediation is essential to alleviate the effects of organic enrichment and hypoxia. This study investigated the effectiveness of oyster shell capping as an in-situ remediation technique by assessing its impact on sediment environment, microbial communities, and macrobenthic fauna.
View Article and Find Full Text PDFNat Ecol Evol
September 2025
Department of Biology, Georgetown University, Washington, DC, USA.
Theory predicts that high population density leads to more strongly connected spatial and social networks, but how local density drives individuals' positions within their networks is unclear. This gap reduces our ability to understand and predict density-dependent processes. Here we show that density drives greater network connectedness at the scale of individuals within wild animal populations.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; International Doctoral Program, College of Hydrosphere, Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaoh
Assessing pollutant fate in highly impacted industrial harbors is challenging, yet crucial for effective ecological risk assessment. This study analyzed key aspects of pollutant fate: spatial distribution, sources, and biomagnification for the organic pollutants polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs), and alkylphenols (APs) in phytoplankton and zooplankton across Kaohsiung Harbor, Taiwan. Spatial variability identified harbor entrances and marine outfall as key hotspots for all three contaminant groups.
View Article and Find Full Text PDF