Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exploring mesoscopic physical phenomena has always been a challenge for brute-force all-atom molecular dynamics simulations. Although recent advances in computing hardware have improved the accessible length scales, reaching mesoscopic timescales is still a significant bottleneck. Coarse-graining of all-atom models allows robust investigation of mesoscale physics with a reduced spatial and temporal resolution but preserves desired structural features of molecules, unlike continuum-based methods. Here, we present a hybrid bond-order coarse-grained forcefield (HyCG) for modeling mesoscale aggregation phenomena in liquid-liquid mixtures. The intuitive hybrid functional form of the potential offers interpretability to our model, unlike many machine learning based interatomic potentials. We parameterize the potential with the continuous action Monte Carlo Tree Search (cMCTS) algorithm, a reinforcement learning (RL) based global optimizing scheme, using training data from all-atom simulations. The resulting RL-HyCG correctly describes mesoscale critical fluctuations in binary liquid-liquid extraction systems. cMCTS, the RL algorithm, accurately captures the mean behavior of various geometrical properties of the molecule of interest, which were excluded from the training set. The developed potential model along with the RL-based training workflow could be applied to explore a variety of other mesoscale physical phenomena that are typically inaccessible to all-atom molecular dynamics simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0151050DOI Listing

Publication Analysis

Top Keywords

learning based
12
reinforcement learning
8
hybrid bond-order
8
bond-order coarse-grained
8
interatomic potentials
8
mesoscale aggregation
8
liquid-liquid mixtures
8
physical phenomena
8
all-atom molecular
8
molecular dynamics
8

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Background: Little is documented on key community-based One Health (OH) approach implementation, pro-activeness and effectiveness of interactions and strategies against Mpox outbreak public health emergency in international concern (PHEIC) in various African countries in order to stamp out the persisting Mpox outbreak threat and burden. Prioritizing critical community-based interventions and lessons learned from previous COVID-19, Mpox, Ebola, COVID-19, Rift Valley Fever and Marburg virus outbreaks revealed critical shortcomings in funding, surveillance, and community engagement that plague public health initiatives across the continent. The article provides critical insights and benefits of community-based One Health approaches implementation against Mpox outbreak management in Africa.

View Article and Find Full Text PDF

Background: Although current evidence supports the effectiveness of social norm feedback (SNF) interventions, their sustained integration into primary care remains limited. Drawing on the elements of the antimicrobial SNF intervention strategy identified through the Delphi-based evidence applicability evaluation, this study aims to explore the barriers and facilitators to its implementation in primary care institutions, thereby informing future optimization.

Methods: Based on the five domains of the Consolidated Framework for Implementation Research (CFIR), we developed semi-structured interview and focus group discussion guides.

View Article and Find Full Text PDF