Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanostructured tungsten disulfide (WS) is one of the most promising candidates for being used as active nanomaterial in chemiresistive gas sensors, as it responds to hydrogen gas at room temperature. This study analyzes the hydrogen sensing mechanism of a nanostructured WS layer using near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and density functional theory (DFT). The W 4f and S 2p NAP-XPS spectra suggest that hydrogen makes physisorption on the WS active surface at room temperature and chemisorption on tungsten atoms at temperatures above 150 °C. DFT calculations show that a hydrogen molecule physically adsorbs on the defect-free WS monolayer, while it splits and makes chemical bonds with the nearest tungsten atoms on the sulfur point defect. The hydrogen adsorption on the sulfur defect causes a large charge transfer from the WS monolayer to the adsorbed hydrogen. In addition, it decreases the intensity of the in-gap state, which is generated by the sulfur point defect. Furthermore, the calculations explain the increase in the resistance of the gas sensor when hydrogen interacts with the WS active layer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224176PMC
http://dx.doi.org/10.3390/s23104623DOI Listing

Publication Analysis

Top Keywords

hydrogen
8
hydrogen sensing
8
sensing mechanism
8
gas sensors
8
dft nap-xps
8
room temperature
8
tungsten atoms
8
sulfur point
8
point defect
8
gas
4

Similar Publications

Eucommia ulmoides Oliver leaf is rich in chlorogenic acid, which has antioxidant, antiviral, and anti-inflammatory activities. In this work, a new and green strategy for functional hyper-crosslinked adsorption resin based on Friedel-Crafts reaction of pendant vinyl groups in divinylbenzene with anhydrous ethanol and acrylamide grafting polymerization was developed, and the obtained HCREt-AM resin had excellent performance on chlorogenic acid separation from Eucommia ulmoides Oliver leaf extract. Adsorption isotherm and kinetics study showed the adsorption process fitted by Langmuir adsorption isotherm and pseudo-second-order kinetic equation.

View Article and Find Full Text PDF

Background: The relationship between carbon dioxide pressures (PCO) and contents (CCO) is linked to the Haldane effect. Nevertheless, under shock conditions, hydrogen ion accumulation might strongly influence the discrepancies between PCO and CCO. This study aims to evaluate the impact of hydrogen ion accumulation and hemoglobin oxygen saturation (Haldane effect) on PCO:CCO relationships during induction and resuscitation of endotoxemic shock.

View Article and Find Full Text PDF

A nanozyme-mediated cascade reaction system for fluorometric and colorimetric dual-mode detection of sarcosine (SA) was developed. The nanozymes (Zn-Glu@Hemin) were synthesized via a rapid self-assembly within 10 min at room temperature. Importantly, the Zn-Glu@Hemin exhibited strong peroxidase (POD)-mimicking activity, catalyzing the generation of hydroxyl radical (·OH) and superoxide anion (O) from hydrogen peroxide (HO), enhancing the fluorescence reaction of o-phenylenediamine (OPD) and the colorimetric reaction of 3,3',5,5'-tetramethylbenzidine (TMB).

View Article and Find Full Text PDF

The hydrogenation side-reaction in copper-mediated radiofluorination.

EJNMMI Radiopharm Chem

September 2025

Department of Experimental Neurooncological Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, 04318, Leipzig, Germany.

Background: Copper-mediated radiofluorination (CMRF) is a breakthrough in F-radiochemistry, enabling F incorporation into molecules even at electron-rich aromatic positions. In recent years, several improved protocols have been reported to advance the application of CMRF. These advancements primarily focus on improving radiochemical conversion, expanding substrate scope, and enabling scalability for remote-controlled radiotracer production.

View Article and Find Full Text PDF

Radiation-induced skin injury (RSI) remains a significant clinical challenge due to persistent oxidative stress, chronic inflammation, and impaired tissue regeneration. It is demonstrated that RSI is accompanied by dysregulation of the immune microenvironment, wherein macrophages act as key regulators of all pathological cascades. Here, we developed a dual network hydrogel (Gel/SA@MXene) through dual cross-linking via UV irradiation and calcium ions to accelerate radiation-combined wound healing.

View Article and Find Full Text PDF