98%
921
2 minutes
20
In recent times, model-driven deep learning has evolved an iterative algorithm into a cascade network by replacing the regularizer's first-order information, such as the (sub)gradient or proximal operator, with a network module. This approach offers greater explainability and predictability compared to typical data-driven networks. However, in theory, there is no assurance that a functional regularizer exists whose first-order information matches the substituted network module. This implies that the unrolled network output may not align with the regularization models. Furthermore, there are few established theories that guarantee global convergence and robustness (regularity) of unrolled networks under practical assumptions. To address this gap, we propose a safeguarded methodology for network unrolling. Specifically, for parallel MR imaging, we unroll a zeroth-order algorithm, where the network module serves as a regularizer itself, allowing the network output to be covered by a regularization model. Additionally, inspired by deep equilibrium models, we conduct the unrolled network before backpropagation to converge to a fixed point and then demonstrate that it can tightly approximate the actual MR image. We also prove that the proposed network is robust against noisy interferences if the measurement data contain noise. Finally, numerical experiments indicate that the proposed network consistently outperforms state-of-the-art MRI reconstruction methods, including traditional regularization and unrolled deep learning techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2023.3293826 | DOI Listing |
Am J Reprod Immunol
September 2025
Department of Laboratory Animal Science, Kunming Medical University, Kunming, China.
Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.
Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.
PLoS One
September 2025
School of Electrical and Information Engineering, Hunan Institute of Technology, Hengyang, Hunan, China.
Knowledge tracing can reveal students' level of knowledge in relation to their learning performance. Recently, plenty of machine learning algorithms have been proposed to exploit to implement knowledge tracing and have achieved promising outcomes. However, most of the previous approaches were unable to cope with long sequence time-series prediction, which is more valuable than short sequence prediction that is extensively utilized in current knowledge-tracing studies.
View Article and Find Full Text PDFIEEE Trans Med Imaging
September 2025
Mammography is a primary method for early screening, and developing deep learning-based computer-aided systems is of great significance. However, current deep learning models typically treat each image as an independent entity for diagnosis, rather than integrating images from multiple views to diagnose the patient. These methods do not fully consider and address the complex interactions between different views, resulting in poor diagnostic performance and interpretability.
View Article and Find Full Text PDFIEEE Trans Med Imaging
September 2025
Computed Tomography (CT) to Cone-Beam Computed Tomography (CBCT) image registration is crucial for image-guided radiotherapy and surgical procedures. However, achieving accurate CT-CBCT registration remains challenging due to various factors such as inconsistent intensities, low contrast resolution and imaging artifacts. In this study, we propose a Context-Aware Semantics-driven Hierarchical Network (referred to as CASHNet), which hierarchically integrates context-aware semantics-encoded features into a coarse-to-fine registration scheme, to explicitly enhance semantic structural perception during progressive alignment.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2025
In industrial scenarios, semantic segmentation of surface defects is vital for identifying, localizing, and delineating defects. However, new defect types constantly emerge with product iterations or process updates. Existing defect segmentation models lack incremental learning capabilities, and direct fine-tuning (FT) often leads to catastrophic forgetting.
View Article and Find Full Text PDF