98%
921
2 minutes
20
L. is an invasive species of global concern. An ornamental plant originating from central America, it has now spread across natural and human-dominated habitats across tropical and subtropical regions globally. Understanding the population and evolutionary genetics of this species could help gain deeper insights into invasion biology, and provide tools for more effective management. Such investigation would require a relatively good quality genome assembly. While there have been reports of a transcriptome, it has been challenging to construct the genome assembly because of the large genome size. We present here the first draft genome assembly of L. which has an N50 value of 62 Kb, genome completeness of 99.3% and genome coverage of 74.3%. We hope that such an assembly will help researchers study colonization history, the genetic basis of adaptation and invasiveness, and help design strategies to contain the invasiveness of this plant, allowing biodiversity recovery in several parts of the globe.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326339 | PMC |
http://dx.doi.org/10.6026/97320630018739 | DOI Listing |
Arch Microbiol
September 2025
College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
Cystofilobasidium infirmominiatum, biotechnologically significant yeast, is increasingly garnering attention due to its superior ability to produce valuable carotenoids and lipids. Nonetheless, until now, the reference genome that governs the biosynthesis of carotenoids and lipids in C. infirmominiatum remains unreported.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße, Hamburg, Germany.
Unlabelled: Human adenoviruses (HAdVs) induce significant reorganization of the nuclear environment, leading to the formation of virus-induced subnuclear structures known as replication compartments (RCs). Within these RCs, viral genome replication, gene expression, and modulation of cellular antiviral responses are tightly coordinated, making them valuable models for studying virus-host interactions. In a recent study, we analyzed the protein composition of HAdV type 5 (HAdV-C5) RCs isolated from infected primary cells at different time points during infection using quantitative proteomics.
View Article and Find Full Text PDFmSystems
September 2025
Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
Genome-scale metabolic models (GEMs) are widely used in systems biology to investigate metabolism and predict perturbation responses. Automatic GEM reconstruction tools generate GEMs with different properties and predictive capacities for the same organism. Since different models can excel at different tasks, combining them can increase metabolic network certainty and enhance model performance.
View Article and Find Full Text PDFMicrobiol Resour Announc
September 2025
Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand, India.
CHRFS5, HL_CHRU_S18, S48B, HL_CHRU_S16, S19, HL_CHRU_S79, and HL_CHRU_S111 were isolated from the biofilm of catheter tip of renal failure patients. Whole genome sequencing predicted the presence of multiple antibiotic-resistant gene cassettes.
View Article and Find Full Text PDFNAR Genom Bioinform
September 2025
Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
Advances in Oxford Nanopore Technologies (ONT) with the introduction of the r10.4.1 flow cell have reduced the sequencing error rates to <1%.
View Article and Find Full Text PDF