98%
921
2 minutes
20
Background And Aims: SARS-CoV-2, as a new pandemic disease, affected the world. Short-chain fatty acids (SCFAs) such as acetic, propionic, and butyric acids are the main metabolites of human gut microbiota. The positive effects of SCFAs have been shown in infections caused by respiratory syncytial virus, adenovirus, influenza, and rhinovirus. Therefore, this study aimed to evaluate the concentration of SCFAs in patients with SARS-CoV-2 compared with the healthy group.
Methods: This research was designed based on a case and control study. Twenty healthy individuals as the control group and 20 persons admitted to the hospital with a positive test of coronavirus disease (COVID-19) real-time polymerase chain reaction were included in the study as the patient group from September 2021 to October 2021, in Tabriz, Iran. Stool specimens were collected from volunteers, and analysis of SCFAs was carried out by a high-performance liquid chromatography system.
Results: The amount of acetic acid in the healthy group was 67.88 ± 23.09 μmol/g, while in the group of patients with COVID-19 was 37.04 ± 13.29 μmol/g. Therefore, the concentration of acetic acid in the patient group was significantly ( < 0.001) lower than in the healthy group. Propionic and butyric acid were present in a higher amount in the control group compared with the case group; however, this value was not statistically significant ( > 0.05).
Conclusion: This study showed that the concentration of acetic acid as the metabolite caused by gut microbiota is significantly disturbed in patients with COVID-19. Therefore, therapeutic interventions based on gut microbiota metabolites in future research may be effective against COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323717 | PMC |
http://dx.doi.org/10.1002/hsr2.1411 | DOI Listing |
Front Immunol
September 2025
Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
Cancer is a multifaceted disease driven by a complex interplay of genetic predisposition, environmental factors and lifestyle habits. With the accelerating pace of cancer research, the gut microbiome has emerged as a critical modulator of human health and immunity. Disruption in the gut microbial populations and diversity, known as dysbiosis, has been linked with the development of chronic inflammation, oncogenesis, angiogenesis and metastasis.
View Article and Find Full Text PDFFront Immunol
September 2025
Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
Background: People living with HIV(PLWH) are a high-risk population for cancer. We conducted a pioneering study on the gut microbiota of PLWH with various types of cancer, revealing key microbiota.
Methods: We collected stool samples from 54 PLWH who have cancer (PLWH-C), including Kaposi's sarcoma (KS, n=7), lymphoma (L, n=22), lung cancer (LC, n=12), and colorectal cancer (CRC, n=13), 55 PLWH who do not have cancer (PLWH-NC), and 49 people living without HIV (Ctrl).
Front Immunol
September 2025
Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
In the last decades, immunotherapy has revolutionized cancer treatment. Despite its success, a significant number of patients fail to respond, and the underlying causes of ineffectiveness remain poorly understood. Factors such as nutritional status and body composition are emerging as key predictors of immunotherapy outcomes.
View Article and Find Full Text PDFNat Sci Sleep
September 2025
Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
Background: Recent research has increasingly underscored a significant correlation between gut microbiota and obstructive sleep apnea (OSA). Probiotics have emerged as promising adjunctive interventions for OSA. Metabolites and their related biochemical pathways have emerged as important contributors to the development of OSA.
View Article and Find Full Text PDFFront Nutr
August 2025
Emergency Department, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China.
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a rising health issue linked to poor diet and gut microbiota dysbiosis. The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet, high in polyphenols and anti-inflammatory nutrients, may help protect against MASLD. This study examined how adherence to the MIND diet relates to MASLD severity, focusing on hepatic steatosis, fibrosis, insulin resistance, inflammation, and gut microbiota diversity.
View Article and Find Full Text PDF