Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radiation therapy is a fundamental cancer treatment in the clinic. However, to satisfy the clinical requirements, radiologists have to iteratively adjust the radiotherapy plan based on experience, causing it extremely subjective and time-consuming to obtain a clinically acceptable plan. To this end, we introduce a transformer-embedded multi-task dose prediction (TransMTDP) network to automatically predict the dose distribution in radiotherapy. Specifically, to achieve more stable and accurate dose predictions, three highly correlated tasks are included in our TransMTDP network, i.e. a main dose prediction task to provide each pixel with a fine-grained dose value, an auxiliary isodose lines prediction task to produce coarse-grained dose ranges, and an auxiliary gradient prediction task to learn subtle gradient information such as radiation patterns and edges in the dose maps. The three correlated tasks are integrated through a shared encoder, following the multi-task learning strategy. To strengthen the connection of the output layers for different tasks, we further use two additional constraints, i.e. isodose consistency loss and gradient consistency loss, to reinforce the match between the dose distribution features generated by the auxiliary tasks and the main task. Additionally, considering many organs in the human body are symmetrical and the dose maps present abundant global features, we embed the transformer into our framework to capture the long-range dependencies of the dose maps. Evaluated on an in-house rectum cancer dataset and a public head and neck cancer dataset, our method gains superior performance compared with the state-of-the-art ones. Code is available at https://github.com/luuuwen/TransMTDP.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065723500430DOI Listing

Publication Analysis

Top Keywords

dose distribution
12
prediction task
12
dose maps
12
dose
11
transformer-embedded multi-task
8
dose prediction
8
transmtdp network
8
correlated tasks
8
consistency loss
8
cancer dataset
8

Similar Publications

A myotropic AAV vector combined with skeletal muscle -regulatory elements improve glycogen clearance in mouse models of Pompe disease.

Mol Ther Methods Clin Dev

June 2025

Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.

Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.

View Article and Find Full Text PDF

Bietti crystalline dystrophy (BCD) is an autosomal recessive disorder caused by loss-of-function mutations in the gene, characterized by crystal-like lipid deposits in the retina, progressive photoreceptor loss, and retinal pigment epithelium (RPE) deterioration. Currently, there are no approved treatments for BCD. VGR-R01, an investigational gene therapy, uses subretinal administration of recombinant adeno-associated virus type 8 (AAV8) vector to deliver the human CYP4V2 gene.

View Article and Find Full Text PDF

Digital twins in nuclear medicine: A proposition of a modular pipeline for dosimetry protocol optimization in molecular radiotherapy.

Comput Struct Biotechnol J

August 2025

Institut de Recherche en Cancérologie de Montpellier (IRCM), Équipe Labellisée Ligue Contre le Cancer, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.

Digital twins (DTs) are emerging tools for simulating and optimizing therapeutic protocols in personalized nuclear medicine. In this paper, we present a modular pipeline for constructing patient-specific DTs aimed at assessing and improving dosimetry protocols in PRRT such as therapy. The pipeline integrates three components: (i) an anatomical DT, generated by registering patient CT scans with an anthropomorphic model; (ii) a functional DT, based on a physiologically-based pharmacokinetic (PBPK) model created in SimBiology; and (iii) a virtual clinical trial module using GATE to simulate particle transport, image simulation, and absorbed dose distribution.

View Article and Find Full Text PDF

Background: Another approach to improve the dose conformity is to use charged particles like protons instead of the conventional X- and γ-rays. Protons exhibit a specific depth-dose distribution which allows to achieve a more targeted dose deposition and a significant sparing of healthy tissue behind the tumor. In particular, proton therapy has, therefore, become a routinely prescribed treatment for tumors located close to sensitive structures.

View Article and Find Full Text PDF

Evaluating the Oncologic and Safety Outcomes of High-Dose Palliative Radiation Treatment with 30 Grays in Five Fractions.

Cureus

August 2025

Division of Radiation Oncology and Developmental Radiotherapeutics, BC Cancer - Vancouver, Vancouver, CAN.

Introduction In select tumor sites, symptom palliation and local control can be improved through delivering higher biological equivalent doses (BED) of radiotherapy. However, not all patients are suitable candidates for stereotactic body radiation therapy (SBRT). The 30 Grays in five fractions (30/5) regimen is a conformal, hypofractionated regimen that offers a higher BED compared to conventional palliative radiotherapy.

View Article and Find Full Text PDF