98%
921
2 minutes
20
Background: Transcranial direct current stimulation (tDCS) has been proposed as a feasible treatment for major depressive disorder (MDD). However, meta-analytic evidence is heterogenous and data from multicentre trials are scarce. We aimed to assess the efficacy of tDCS versus sham stimulation as an additional treatment to a stable dose of selective serotonin reuptake inhibitors (SSRIs) in adults with MDD.
Methods: The DepressionDC trial was triple-blind, randomised, and sham-controlled and conducted at eight hospitals in Germany. Patients being treated at a participating hospital aged 18-65 years were eligible if they had a diagnosis of MDD, a score of at least 15 on the Hamilton Depression Rating Scale (21-item version), no response to at least one antidepressant trial in their current depressive episode, and treatment with an SSRI at a stable dose for at least 4 weeks before inclusion; the SSRI was continued at the same dose during stimulation. Patients were allocated (1:1) by fixed-blocked randomisation to receive either 30 min of 2 mA bifrontal tDCS every weekday for 4 weeks, then two tDCS sessions per week for 2 weeks, or sham stimulation at the same intervals. Randomisation was stratified by site and baseline Montgomery-Åsberg Depression Rating Scale (MADRS) score (ie, <31 or ≥31). Participants, raters, and operators were masked to treatment assignment. The primary outcome was change on the MADRS at week 6, analysed in the intention-to-treat population. Safety was assessed in all patients who received at least one treatment session. The trial was registered with ClinicalTrials.gov (NCT02530164).
Findings: Between Jan 19, 2016, and June 15, 2020, 3601 individuals were assessed for eligibility. 160 patients were included and randomly assigned to receive either active tDCS (n=83) or sham tDCS (n=77). Six patients withdrew consent and four patients were found to have been wrongly included, so data from 150 patients were analysed (89 [59%] were female and 61 [41%] were male). No intergroup difference was found in mean improvement on the MADRS at week 6 between the active tDCS group (n=77; -8·2, SD 7·2) and the sham tDCS group (n=73; -8·0, 9·3; difference 0·3 [95% CI -2·4 to 2·9]). Significantly more participants had one or more mild adverse events in the active tDCS group (50 [60%] of 83) than in the sham tDCS group (33 [43%] of 77; p=0·028).
Interpretation: Active tDCS was not superior to sham stimulation during a 6-week period. Our trial does not support the efficacy of tDCS as an additional treatment to SSRIs in adults with MDD.
Funding: German Federal Ministry of Education and Research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0140-6736(23)00640-2 | DOI Listing |
Front Hum Neurosci
September 2025
Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States.
Primary progressive aphasia (PPA) is a neurological syndrome characterized by the gradual deterioration of language capabilities. Due to its neurodegenerative nature, PPA is marked by a continuous decline, necessitating ongoing and adaptive therapeutic interventions. Recent studies have demonstrated that behavioral therapies, particularly when combined with neuromodulation techniques such as transcranial direct current stimulation (tDCS), can improve treatment outcomes, including the long-term maintenance and generalization of therapeutic effects.
View Article and Find Full Text PDFCNS Neurosci Ther
September 2025
Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Objective: Traumatic brain injury (TBI), a prevalent neurological disorder worldwide, is marked by varying degrees of neurological dysfunction. A key contributor to secondary damage and impediments in the repair process is the unregulated activation of microglia, which triggers neuroinflammation. Emerging evidence highlights the therapeutic potential of transcranial pulsed current stimulation (tPCS) in mitigating neurological deficits.
View Article and Find Full Text PDFGait Posture
September 2025
School of Business, Social and Decision Sciences, Constructor University Bremen, Constructor University, Campus Ring 1, Bremen 28759, Germany.
Background: Age-related declines in dynamic balance and cognitive control increase fall risk in older adults (OA). Non-invasive brain stimulation, such as anodal transcranial direct current stimulation (a-tDCS), may enhance training outcomes. However, it remains unclear whether stimulation over motor or prefrontal regions is more effective for improving dynamic balance training (DBT) in OA.
View Article and Find Full Text PDFBMJ Open
September 2025
Faculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte, Santa Cruz, Brazil.
Introduction: Osteoarthritis (OA) is a degenerative and progressive joint condition causing pain and disability. Physical exercise is recognised as the most effective intervention since individuals with this condition often experience muscle weakness, balance deficits and chronic pain. Additionally, knee osteoarthritis (KOA) is associated with central sensitisation, contributing to chronic pain conditions.
View Article and Find Full Text PDFSci Adv
September 2025
Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
Advances in brain stimulation have made it possible to target smaller and smaller regions for electromagnetic stimulation, in the hopes of producing increasingly focal neural effects. However, the brain is extensively interconnected, and the neurons comprising those connections may themselves be particularly susceptible to neurostimulation. Here, we test this hypothesis by identifying long-range projections in single-unit recordings from nonhuman primates receiving transcranial alternating current stimulation.
View Article and Find Full Text PDF