98%
921
2 minutes
20
The phase structure with a small domain size in polymers is expected to provide a template for lithography to fabricate electronic devices, while the uniformity and thermal stability of the phase structure are vital in lithography. In this work, we report an accurately microphase-separated system of comb-like poly(ionic liquid) (PIL)-based homopolymers containing imidazolium cation junctions between the main chain parts and the long alkyl side chains, poly(1-((2-acryloyloxy)ethyl)-3-alkylimidazolium bromide) (P(AOEAI-Br)). The ordered hexagonally packed cylinder (HEX) and lamellar (LAM) structures with small domain sizes (sub-3 nm) were successfully achieved. Since the microphase separation was induced by the incompatibility between the main chain parts and the hydrophobic alkyl chains, the microdomain spacing of the ordered structure was independent of the molecular weight and molecular weight distribution of P(AOEAI-Br) homopolymers and could be precisely regulated by changing the length of the alkyl side chains. Importantly, the microphase separation was promoted by the charged junction groups; thus, the phase structure and domain size of P(AOEAI-Br) exhibited excellent thermal stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.3c00277 | DOI Listing |
J Colloid Interface Sci
August 2025
Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia. Electronic address:
Hydrogels are soft and wet materials which require enhanced mechanical properties and toughness. For this aim, double-network hydrogels were prepared from soft network of covalently crosslinked hydroxypropyl guar and hard self-assembled network of carboxymethylated cellulose nanocrystals (CNCs) reversibly crosslinked by calcium ions. The gels exhibited a dramatic enhancement of mechanical strength and toughness with increasing content of CNCs and demonstrated remarkable fatigue resistance.
View Article and Find Full Text PDFJACS Au
August 2025
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.
The morphology of biomolecular condensates plays a critical role in regulating intracellular organization and function by enabling both spatial and temporal control over biochemical processes. Recent studies have shown that small-molecule cosolutes can not only modulate phase separation but also influence condensate morphology. However, the mechanistic understanding of how small molecules regulate condensate structure remains limited.
View Article and Find Full Text PDFMolecules
August 2025
Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China.
A series of novel discotic liquid crystalline donor-acceptor hybrid heterojunctions were prepared by blending the triphenylene derivative (T5E36) as donor and perylene tetracarboxylic esters as acceptor. Mesophases of blends were characterized by using polarized optical microscopy, differential scanning calorimetry, and X-ray diffraction. Results suggest that all the blends formed liquid crystalline phases, where both compounds in the blends self-assembled separately into columns yet cooperatively contributed to the overall hexagonal or tetragonal columnar mesophase structure.
View Article and Find Full Text PDFMacromol Rapid Commun
August 2025
State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, China.
Amorphous organic polymers with long-lived room-temperature phosphorescence (RTP) characteristics offer intriguing possibilities to advance information security, biological imaging, optoelectronic devices, and intelligent sensors. Despite the recent advances, access to phosphorescent polymers with excellent stretchability and shape memory performance remains a challenge. Herein, nanostructured RTP block copolymers biomimicking mussel cuticles were achieved by atom transfer radical polymerization (ATRP).
View Article and Find Full Text PDFSoft Matter
August 2025
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Polyampholyte gels with hierarchical structures due to the microphase separation are good candidates for biomaterials and bioengineering due to their unique properties such as self-healing and anti-biofouling. However, how to precisely control their microstructures and viscoelastic properties is yet to be explored. By introducing the acrylamide neutral blocks, we have quantitively tuned the microstructures and viscoelastic properties of polyampholyte gels.
View Article and Find Full Text PDF