Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pharmacological conditioning aims to protect the heart from myocardial ischemia-reperfusion injury (IRI). Despite extensive research in this area, today, a significant gap remains between experimental findings and clinical practice. This review provides an update on recent developments in pharmacological conditioning in the experimental setting and summarizes the clinical evidence of these cardioprotective strategies in the perioperative setting. We start describing the crucial cellular processes during ischemia and reperfusion that drive acute IRI through changes in critical compounds (∆G, Na, Ca, pH, glycogen, succinate, glucose-6-phosphate, mitoHKII, acylcarnitines, BH, and NAD). These compounds all precipitate common end-effector mechanisms of IRI, such as reactive oxygen species (ROS) generation, Ca overload, and mitochondrial permeability transition pore opening (mPTP). We further discuss novel promising interventions targeting these processes, with emphasis on cardiomyocytes and the endothelium. The limited translatability from basic research to clinical practice is likely due to the lack of comorbidities, comedications, and peri-operative treatments in preclinical animal models, employing only monotherapy/monointervention, and the use of no-flow (always in preclinical models) versus low-flow ischemia (often in humans). Future research should focus on improved matching between preclinical models and clinical reality, and on aligning multitarget therapy with optimized dosing and timing towards the human condition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217104PMC
http://dx.doi.org/10.3390/cells12101432DOI Listing

Publication Analysis

Top Keywords

ischemia reperfusion
8
pharmacological conditioning
8
clinical practice
8
preclinical models
8
clinical
5
pharmacological cardioprotection
4
cardioprotection ischemia
4
reperfusion injury-the
4
injury-the search
4
search clinical
4

Similar Publications

The global shortage of suitable donor kidneys is the primary challenge in kidney transplantation, and it is exacerbated by ageing donors with increased numbers of health issues. Improving organ assessment, preservation and conditioning could enhance organ utilization and patient outcomes. Hypothermic machine perfusion (HMP) is associated with better results than static cold storage by reducing delayed graft function and improving short-term graft survival, especially in kidneys recovered from marginal-quality donors.

View Article and Find Full Text PDF

Static cold storage (SCS) on ice has remained the gold standard preservation method for heart transplantation, and prolonged cold ischemia outside the typical 4-6 hour window is associated with an increased risk of primary graft dysfunction - a consequence attributed to ischemic damage and reperfusion injury. This, unfortunately limits the travel radius for donor heart procurement, a key factor that contributes to the overall shortage of donor organs. Recent research and clinical data have illustrated the validity of other preservation systems in preserving cardiac allografts, and many of these devices have shown promise in potentially prolonging the tolerated ischemic time beyond the accepted standard.

View Article and Find Full Text PDF

Repurposing zafirlukast confers renal protection in ischemia-reperfusion injury via suppressing macrophage METosis.

Int Immunopharmacol

September 2025

Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China; Department of Pharmacology, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China; State Key Laboratory for

Tacrolimus is widely used to prevent post-transplant acute kidney injury (AKI) but causes severe toxicities (e.g., nephrotoxicity, hyperglycemia).

View Article and Find Full Text PDF

20(R)-ginsenoside Rg3 Inhibits Neuroinflammation Induced by Cerebral Ischemia/Reperfusion Injury by Regulating the Toll-Like Receptor 4/Myeloid Differentiation Factor-88/Nuclear Factor Kappa B Signaling Pathway.

Chem Biodivers

September 2025

School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.

20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.

View Article and Find Full Text PDF