98%
921
2 minutes
20
Inferring the chronological and biological age of individuals is fundamental to population ecology and our understanding of ageing itself, its evolution, and the biological processes that affect or even cause ageing. Epigenetic clocks based on DNA methylation (DNAm) at specific CpG sites show a strong correlation with chronological age in humans, and discrepancies between inferred and actual chronological age predict morbidity and mortality. Recently, a growing number of epigenetic clocks have been developed in non-model animals and we here review these studies. We also conduct a meta-analysis to assess the effects of different aspects of experimental protocol on the performance of epigenetic clocks for non-model animals. Two measures of performance are usually reported, the R of the association between the predicted and chronological age, and the mean/median absolute deviation (MAD) of estimated age from chronological age, and we argue that only the MAD reflects accuracy. R for epigenetic clocks based on the HorvathMammalMethylChip4 was higher and the MAD scaled to age range lower, compared with other DNAm quantification approaches. Scaled MAD tended to be lower among individuals in captive populations, and decreased with an increasing number of CpG sites. We conclude that epigenetic clocks can predict chronological age with relatively high accuracy, suggesting great potential in ecological epigenetics. We discuss general aspects of epigenetic clocks in the hope of stimulating further DNAm-based research on ageing, and perhaps more importantly, other key traits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.17065 | DOI Listing |
Clin Epigenetics
September 2025
Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany.
Background: Work-related stress is a well-established contributor to mental health decline, particularly in the context of burnout, a state of prolonged exhaustion. Epigenetic clocks, which estimate biological age based on DNA methylation (DNAm) patterns, have been proposed as potential biomarkers of chronic stress and its impact on biological aging and health. However, their role in mediating the relationship between work-related stress, physiological stress markers, and burnout remains unclear.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFAging Cell
September 2025
Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.
Epigenetic clocks have emerged as promising biomarkers of aging, but their responsiveness to lifestyle interventions and relevance for short-term changes in cardiometabolic health remain uncertain. In this study, we examined the associations between three epigenetic aging measures (DunedinPACE, PCPhenoAge acceleration, and PCGrimAge acceleration) and a broad panel of cardiometabolic biomarkers in 144 obese participants from the MACRO trial, a 12-month weight-loss dietary intervention comparing low-carbohydrate and low-fat diets. At pre-intervention baseline, DunedinPACE was significantly associated with several cardiometabolic biomarkers (FDR [false discovery rate] < 0.
View Article and Find Full Text PDFAging increases the global burden of disease, yet its molecular basis remains incompletely understood. Recent studies indicate that reversible epigenetic drift-spanning DNA methylation clocks, histone codes, three-dimensional chromatin, and noncoding RNA networks-constitutes a central regulator of organismal decline and age-related diseases. How these epigenetic layers interact across different tissues-and how best to translate them into therapeutic strategies-are still open questions.
View Article and Find Full Text PDFNPJ Metab Health Dis
September 2025
ATLAS Molecular Pharma, Parque Tecnológico de Bizkaia, Ed. 800, 48160, Derio, Spain.
Molecular aging clocks estimate biological age from molecular biomarkers and often outperform chronological age in predicting health outcomes. Types include epigenetic, transcriptomic, proteomic, and metabolomic clocks. NMR-based metabolomic clocks provide a non-invasive, high-throughput platform to assess metabolic health.
View Article and Find Full Text PDF