Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Artificial intelligence (AI) and machine learning (ML) are becoming critical in developing and deploying personalized medicine and targeted clinical trials. Recent advances in ML have enabled the integration of wider ranges of data including both medical records and imaging (radiomics). However, the development of prognostic models is complex as no modeling strategy is universally superior to others and validation of developed models requires large and diverse datasets to demonstrate that prognostic models developed (regardless of method) from one dataset are applicable to other datasets both internally and externally. Using a retrospective dataset of 2,552 patients from a single institution and a strict evaluation framework that included external validation on three external patient cohorts (873 patients), we crowdsourced the development of ML models to predict overall survival in head and neck cancer (HNC) using electronic medical records (EMR) and pretreatment radiological images. To assess the relative contributions of radiomics in predicting HNC prognosis, we compared 12 different models using imaging and/or EMR data. The model with the highest accuracy used multitask learning on clinical data and tumor volume, achieving high prognostic accuracy for 2-year and lifetime survival prediction, outperforming models relying on clinical data only, engineered radiomics, or complex deep neural network architecture. However, when we attempted to extend the best performing models from this large training dataset to other institutions, we observed significant reductions in the performance of the model in those datasets, highlighting the importance of detailed population-based reporting for AI/ML model utility and stronger validation frameworks. We have developed highly prognostic models for overall survival in HNC using EMRs and pretreatment radiological images based on a large, retrospective dataset of 2,552 patients from our institution.Diverse ML approaches were used by independent investigators. The model with the highest accuracy used multitask learning on clinical data and tumor volume.External validation of the top three performing models on three datasets (873 patients) with significant differences in the distributions of clinical and demographic variables demonstrated significant decreases in model performance.

Significance: ML combined with simple prognostic factors outperformed multiple advanced CT radiomics and deep learning methods. ML models provided diverse solutions for prognosis of patients with HNC but their prognostic value is affected by differences in patient populations and require extensive validation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10309070PMC
http://dx.doi.org/10.1158/2767-9764.CRC-22-0152DOI Listing

Publication Analysis

Top Keywords

prognostic models
12
clinical data
12
models
10
head neck
8
neck cancer
8
deep learning
8
medical records
8
retrospective dataset
8
dataset 2552
8
2552 patients
8

Similar Publications

Background: Metabolic reprogramming is an important hallmark of cervical cancer (CC), and extensive studies have provided important information for translational and clinical oncology. Here we sought to determine metabolic association with molecular aberrations, telomere maintenance and outcomes in CC.

Methods: RNA sequencing data from TCGA cohort of CC was analyzed for their metabolic gene expression profile and consensus clustering was then performed to classify tumors into different groups/subtypes.

View Article and Find Full Text PDF

Objective: Anoikis is an anchorage-dependent programmed cell death implicated in multiple pathological processes of cancers; however, the prognostic value of anoikis-related genes (ANRGs) in hepatocellular carcinoma (HCC) remains unclear. Our study aims to develop an ANRGs-based prediction model to improve prognostic assessment in HCC patients.

Methods: The RNA-seq profile was performed to estimate the expression of ANRGs in HCC patients.

View Article and Find Full Text PDF

Chronic Obstructive Pulmonary Disease (COPD) is a prevalent chronic respiratory disorder characterized by airway inflammation and irreversible airflow limitation. Its marked heterogeneity and complexity pose significant challenges to traditional clinical assessments in terms of prognostic prediction and personalized management. In recent years, the exploration of biomarkers has opened new avenues for the precise evaluation of COPD, particularly through multi-biomarker prediction models and integrative multimodal data strategies, which have substantially improved the accuracy and reliability of prognostic assessments.

View Article and Find Full Text PDF

The Oncotype DX test is standardly used for patients with early-stage, hormone-receptor-positive, HER2-negative breast cancers to determine the benefit from chemotherapy and the likelihood of distant recurrence. The relationship between Oncotype DX recurrence scores and race/ethnicity is still being studied. This retrospective study aims to evaluate the relationship between Oncotype DX recurrence scores, race/ethnicity, and clinicopathological factors and to support the applicability of the Oncotype DX test for a diverse breast cancer population of Hawaii.

View Article and Find Full Text PDF

Objective: The risk of lymph node metastasis significantly influences the choice of surgical strategy for patients with early-stage endometrial cancer. While sentinel lymph node dissection can be considered in clinically early-stage endometrial cancer, lymph node evaluation might be omitted in patients with very low risk of lymph node metastasis. This study aims to develop a predicting model for lymph node metastasis in these patients, identifying potential metastases as thoroughly as possible to provide clinicians with a preoperative reference that helps in decisions about surgical procedures and treatments.

View Article and Find Full Text PDF