A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

DUSP2 recruits CSNK2A1 to suppress AKT1-mediated apoptosis resistance under hypoxic microenvironment in pancreatic cancer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pancreatic ductal adenocarcinoma (PDAC) is characterized by hypoxic tumor microenvironment (TME), which aids tumor progression, drug resistance, and immune evasion. Dual-specificity phosphatase 2 (DUSP2), a member of the mitogen-activated protein kinase phosphatase family, regulates pancreatic cancer metastasis. However, its role in the hypoxic TME in PDAC remains unknown. We explored the role of DUSP2 by simulating the hypoxic TME. DUSP2 significantly promoted apoptosis in PDAC both in vitro and in vivo, mainly through AKT1 rather than ERK1/2. Mechanistically, DUSP2 competed with AKT1 to bind to casein kinase 2 alpha 1 (CSNK2A1) and inhibited the phosphorylation of AKT1, which plays a crucial role in apoptosis resistance. Interestingly, aberrant activation of AKT1 resulted in an increase in the ubiquitin E3 ligase tripartite motif-containing 21 (TRIM21), which binds to and mediates the ubiquitination-dependent proteasomal degradation of DUSP2. Overall, we identified CSNK2A1 as a novel binding partner of DUSP2 that promotes PDAC apoptosis through CSN2KA1/AKT1 in an ERK1/2-independent manner. Activation of AKT1 also mediated proteasomal degradation of DUSP2 via the AKT1/TRIM21 positive feedback loop. We propose increasing the level of DUSP2 as a potential therapeutic strategy for PDAC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2023.216288DOI Listing

Publication Analysis

Top Keywords

dusp2
9
apoptosis resistance
8
pancreatic cancer
8
hypoxic tme
8
activation akt1
8
proteasomal degradation
8
degradation dusp2
8
pdac
5
akt1
5
dusp2 recruits
4

Similar Publications